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Microcalorimeter and bolometer model
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The standard nonequilibrium theory of noise in ideal bolometers and microcalorimeters fails to

predict the performance of real devices due to additional effects that become important at low
temperature. In this paper we extend the theory to include the most important of these effects and
find that the performance of microcalorimeters operating at 60 mK can be quantitatively predicted.

We give a simple method for doing the necessary calculations, borrowing the block diagram

formalism from electronic control theory. @003 American Institute of Physics.
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I. INTRODUCTION hot-electron effect. The hot-electron model assumes that the
resistance of the thermometer depends on the temperature of

A complete nonequilibrium theory for the noise in the electrons, and there is a thermal resistance between the
simple bolometers with ideal resistive thermometers waglectrons and the crystal lattice through which the bias power
given by Mather in 1982Ref. 1) and extended to microcalo- must flow, increasing the temperature of the electrons above
rimeter performance two years lafeiere we use the terms the temperature of the lattice and, therefore, changing the
bolometer and calorimeter in the conventional sense, respethermometer resistance. This effect is well known in metals
tively indicating power detectors and integrating energy deat low temperatures and has recently been studied in semi-
tectors. conductors in the variable-range hopping reghté? The

This theory shows that the performance of these devicesoise analysis incorporates terms for thermometer Johnson
improves dramatically as the operating temperature is reand 1f noise, amplifier noise, load resistor Johnson noise,
duced. However, at temperatures belew200 mK, it be- and thermodynamic fluctuations between the electron and
comes increasingly difficult to construct a bolometer that bephonon systems in the thermometer as well as between the
haves according to the ideal assumptions. The resistance absorber, the thermometer, and the heat sink. In the model
the thermometer becomes dependent on readout power, aig also included the effect of thermometer nonohmic behav-
temperature and equilibration times between different part#r, i.e., dependence of the thermometer resistance on the
of the detector become significant. Thermodynamic fluctuabias signal. This effect is particularly important when transi-
tions between internal parts are then an additional noistion edge sensoréTES's) are usetf and makes the model
source. The physical description for most of these effects i¥aluable for predicting the performance of this type of
straightforward, but combining all of them into a detector detector.
model can be algebraically daunting.

Theoretical models that describe complex thgrmal arch|—|_ THE IDEAL MODEL
tectures are necessary to understand the behavior of real de-
vices, and some groups have already extended the “ideal” To help the reader understand the algebra of our model
model developed by Mather in 1982 to include some nonwe decided to start our analysis with an overview of the ideal
ideal effects in order to explain their experimental restiifs. model that has been previously developed. Despite their dif-
We developed a general bolometer and microcalorimeteferent applications, bolometers and microcalorimeters are
model using the block diagram formalism of control theory.very similar detectors and the theory of their operation is
The formalism helps with the mechanics of the problem,largely the same. The considerations of this paper apply to
while keeping the physical model reasonably transpdrént. both kinds of detectors unless otherwise specified and we
In the model we have included the thermal decoupling bewill use the generic term “detectors” to refer to both.
tween the electron system and the phonon system in the ther- Typically a bolometer or a microcalorimeter is composed
mometer, the so-calledot-electronmodel, the thermal de- of three parts: an absorber that converts the incident power or
coupling between the absorber and the thermometer, arghergy into a temperature variation, a sensor that reads out
nonohmic behaviors of the thermometer in addition to thethe temperature variation, and a thermal link between the

detector and a heat sink. The sensor is typically a resistor
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FIG. 1. Thermal sketch of a bolometer or microcalorimeter.

Detector

FIG. 2. Typical detector readout circuit.
sink through a thermal conductivits (see Fig. 1 and a
thermometer always at the temperature of the absorber. The

thermometer sensitivity is specified by dTp o
C—+f G(T)dT' =W+P(Tp), (5
TdR dt Ts
a=-S =, 1) o _

RdT where we explicitly indicated that the bias power can be a
whereT is the detector temperature aRtiis the sensor re- function of the temperaturé, and where the quantitiet ,
sistance. The thermal conductivi§ is defined as W, and P can be a function of tim&. We can express the

generic detector temperatufg as a function of the equilib-
_ d_P @) rium temperaturd defined in Eq(4) asTp=T+AT. Equa-
dT’ tion (5) then becomes
whereP is the power dissipated into the detector. The con-_d(T+AT) T , , T+AT ) ,
ductivity G can generally be expressed as a power law of th& dt JTSG(T )dT’ + j G(T)dT

detector temperatur€, i.e., G=G,T#. Notice that numeri-
cally G, is equal to the thermal conductivity at 1 K, but =W+P(T+AT). (6)
dimensionallyG, is a thermal conductivity divided by a tem-

perature tql.tth. " her i han th o Sume thaiAT is small compared td—we can expand the
In equilibrium, with no other input power than the Joule go0qy integral to lowest order T/T, obtaining
power P used to read out the thermometer resistance, the

equilibrium temperature of the detectdris determined by ~_d(T+AT) (7
integrating Eq(2) between the heat sink temperatirgand dt * SG(T )T +G(T)AT
the detector temperature:

If we stay in the so-calledmall-signal limiti.e., we as-

-
=W+P(T)+AP, 7

T
J G(T)dT'=P(T). ()  with AP=P(T+AT)—P(T). Subtracting Eq(3) from Eq.
Ts (7) and considering that the equilibrium temperatiirdoes
Assuming the power law expression f@& introduced not change with time, we obtain
before and integrating it becomes Cd(AT)
L AR @ a
0 where for simplicity we expresse@d=G(T).
It is important to remember, when calculating the equilib-  In general, the bias power will change with temperature,
rium temperature, that the powBrdepends on the value of since R changes, and its expression depends on the bias
the sensor resistance and, as a consequence, it depends ongfiérce impedance. A typical bias circuit is illustrated in Fig.
temperaturdl, as explicitly indicated in Eq4). To calculate 2 WhereR is the thermometer resistance aRd is a load
the equilibrium temperature it is therefore necessary to solvéesistor. The most commonly used bias conditions are near
the system of equations represented by @j. the P vs R current bias R >R) and near voltage biaR{ <R). More
curve and theR vs T curve. In general, the system must be complex bias circuits are also used and can always be repre-
solved numerically. sented by the circuit of Fig. 2 using Thevenin equivalence
Of interest from the point of view of the detector opera- theorems. Differentiating the expression for the Joule power
tion is how the temperature riskT above the equilibrium P=1?R=V?/R and using the bias circuit of Fig. 2 we obtain
temperature depends on an external incident pdweThe PR-R,
power input to the detectoM(+ P) is partly stored into the AP=— TR IR
heat capacity of the detector and partly flows to the heat sink L
through the thermal conductivity. The equation that deter-  This term is generally referred to as tke&ectrothermal
mines the generic temperaturg of the detector is therefore feedbackterm and it often plays an important role in the

+GAT=W+AP, (8)

AT. 9
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response of a detector. For simplicity in the small-signal ana-

o
lytical calculations, we write the electrothermal feedback ~AV=Vz RLJtRAT’ (16)
term as
AP=—GgrgAT, (10) Al=—12 R AT 17)
TR+R-
where

We can generically indicate the output signal>asnd the

P R-R, ;
Gepr=— a, (11) relation between the output and the temperature as
TR +R
AX AT
so that Eq.(8) becomes ~ = aPy Ea (18
d(aT) where A, is a dimensionless parameter that quantifies how
much the output signal is sensitive to resistance changes and

or, introducing an equivalent thermal conductiviB =G thaF we call the transducer sensitivity. Numericahly, is
+Ggre (which we refer to agffective thermal conductiviy — defined as
R dX

cwﬂaeffM:W. (13 Ar=% 4R" (19

The easiest way to solve this differential equation is usNotice that the expression @, can be easily derived from
ing Fourier transforms. The procedure is to use Fourier trand=gs. (18) and (16) or (17) for voltage and current readout,
forms to convert the terms of E¢L3) to the frequency do- and is always smaller or equal to unity for passive bias cir-
main, solve the equation in the frequency domain where iguit (R_.>0).
becomes a linear equation, and then Fourier invert transform The response of a detector is usually quantified by the
the result to the time domain. The advantage of solving Eqresponsivity $w), defined as
(13) in the frequency domain comes from the fact that the

expressiondAT(t)/dt in the frequency domain becomes S(w :M; (20)
joAT(w), where we used the engineering notatipn W(w)
=y—1. Equation (13 in the frequency domain then . s the responsivity characterizes the response of the de-
becomes tector, AX, to an input powetW. In the ideal model just
joCAT(w)+ G AT(w)=W(w), (14)  described we can combine Ed45) and(18) to obtain
whose solution is 1 1 XaAy
AX(w)= - W(w), 21
1 1 («) Gerr 1+jwrery T (@) @)
AT(w)= Gett 1+jwreffw(w)' (15) and the responsivity is then equal to
with Teff— C/Geff. S( ) 1 1 XaAtr (22)
- 1 w)= T .
The detector system behaves as a low-pass system, with Gorf 1+jwrers T

time constantres;. FoOr negative electrothermal feedback
Gere Must be positive and the detector time constant is A detector at the working point is also often described by
shortened. For positive feedbaG+¢ is negative and the the complex dynamic impedanZ§w)=dV(w)/dl(w). The
detector time constant is lengthened and, in the case afynamic impedance(w) differs from the detector resis-
|Gerel bigger thanG, the detector becomes unstable. ThetanceR=V/I due to effect of the electrothermal feedback.
sign of Ggrr depends on the sign af and on the bias When the current changes, the power dissipated into the de-
condition usedi.e., the ratioR/R,). In the small-signallin-  tector changes too; therefore, the temperature and the detec-
eap limit considered here and in absence of amplifier noisetor resistance change. It is often useful to express the detec-
the signal has no effect on the detector performance. Howtor performance and characteristics in terms of the dynamic
ever, positive feedback reduces the effect of amplifier noisgmpedance since it can be easily measured experimentally.
while negative feedback helps linearize the large-signal gain  The calculation of the analytical expression of the dy-
and improves microcalorimeter resolution for large signals anamic impedance is simple. Differentiating Ohm’s law,

high count rate. Since it can usually be arranged that ampli=IR, we obtain

fier noise is negligible, these practical considerations nor-

mally favor negative feedback. Current bid&&<(R,) for de- dv=1dR+R dI. (23

tectors with negativea and voltage bias R>R;) for  Using Eq.(8) in the frequency domain withV=0 and the

detectors with positiver are then used. definition of the thermometer sensitivity in Eq. (1), we

In operating a detector, what is really detected is nofbtain:
directly the temperature variatiodT, but the resistance
variationAR, which is read out either as a voltage or current _ E _ @
variation, that is dR=FadT=== 1_,_ijde (24)
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FIG. 3. Block diagram representation of a system with transfer function W+X:L++y:L+z _ w+y%++x%+ z
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with 7=C/G. This 7 is called the “intrinsic” or “thermal”
time constant of the detector.

Differentiating the expression of the Joule power dissipated H
into the thermometeP=VI, we obtain =

dP=V dI+I dV, (25
which, combined with Eqs(23) and (24), gives

=l
+

+

[
= =
+
O

L
H

FIG. 4. Some general operations with the block diagram algebra.

V=R di+i R Y aveval 26
N * G_Tl—l—jan'( * )- (26

the impedance can become infinite. It is then more conve-
nient to work with the inverse quantity 2(w)=dI/dV.
In the case of a detector whose signal is read out as a

Notice that in Eqs(23)—(26) most of the terms are function
of the frequencyw. Solving Eq.(26) we obtain

Pa . . Zp+R voltage change, where the responsiviByis defined as
V() toptler 1flermHz S(w) =dV(w)/dW(w), we can also write
Z{w)= dl(a)):Rl Pa :ZOH. Zo+R '
- == wT wT
GT ' J9TR 1 (ZR-1 1 2
@7 S0)= S Z RO+ L 1t jorers’ 29
where we used the expression
1+ 2 At this point we want to introduce a useful technique for
GT analyzing the response of a bolometer or a microcalorimeter:
Zy=Z(0=0)=R : 28 plock diagram algebra. This technique is generally used in
Pa
1- GT electrical engineering to analyze feedback systems and it is
very useful when extending the theory of bolometers and
Notice that wherw—x, Z—R. microcalorimeters to more complicated realistic systems.

The dynamic impedancg&(w)=dV/dl is easily mea- The algebra of block diagrams and the language of control
sured experimentally. It can be determined most readily byheory have been successfully used before in the analysis of
adding a small ac signal to the bias voltage and measurinmicrocalorimeters and bolometer’ The basic idea is that a
the transfer functionof the detectolm F(w). This is the ratio  system with transfer function in the frequency domain equal
of amplitudes and relative phase between changes in the des H(w) is represented by the diagram of Fig. 3. If an input
tector voltage and changes in the bias voltage as a functiom(w) is applied to the system, the output is Quif(
of frequency. Most spectrum analyzers have the capability o H(w) In(w). Complicated systems can always be reduced
measuring the complex ratio between two signals as a funde the system of Fig. 3 using the block diagram algebra.
tion of frequency and can do this simultaneously over thd=igure 4 shows some of the common operations that will be
frequency range of interest using a band-limited white noisaised in this paper. The procedure to solve the response of a
source. Signal averaging allows very precise measurement gystem using the block diagram algebra is then the follow-
be made while remaining in the small-signal limit. The dy-ing:
namic impedance is easily derived from the transfer function (i) Write the differential equations that define the system
using the value of the load resistance and making appropriatesponse.
corrections for stray electrical capacitance or inductance in (i) Convert the equations to the frequency domain and,
the circuit. For example, in the bias circuit of Fig. 2, without for each equation define the individual system response and
stray capacitance, the impedance is equal Zfw) the input to that system.
=R TF(w)/[1-TF(w)]. (iii) Lay out the block diagram that describes all the

It is then possible to determine values for many of theequations together.
important parameters of the detector by fitting the real and (iv) Use the block diagram algebra to reduce the block
imaginary parts of the transfer function by adjusting the therdiagram to the form of Fig. 3 that represents the system
mal and electrical parameters in the expressions given in thiesponse in the frequency domain.
paper. This is very valuable for diagnosing performance This representation is particularly useful to deal with
problems or improving the design of detectors. Note thafeedback systems, i.e., systems where the output is combined
when the thermometer temperature coefficieris positive,  to the input through a transfer functi@y ») as in Fig. 5. In
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1+H(®) G(®)
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FIG. 5. Block diagram representation of a feedback system.

this case, whenever an external inputudhis applied to the
system the output is

H(w)
1+H(w)G(w)

whereH . (w) is called theclosed-loop transfer function

Outlw)= In(w)=H¢ (w)In(w), (30
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Going back to the theory of bolometers and microcalo-

rimeters, we can write Eq12) as

d(AT)
which, in the frequency domain, becomes

HEAT SINK

FIG. 7. Thermal sketch of a bolometer or microcalorimeter in the hot-
electron model.

ture is weaker than the coupling between electrons, so that
the electric power applied to the electrons rises them to a

We now want to generate the block diagram describing thigyigher temperature than the lattice. This behavior is a known

equation. The left part represents the response of the systefioperty of metals and has recently been quantified in doped
that we are analyzingthe outputAT as a function of an  gjjicon12 so that it affects both TES’s and semiconductor

input powey, while the right part represents the input to thatgensors. The detector can therefore be described as com-
system. The fact that the input depends on the oulluis  hosed of two different systems—the electron system and the
a consequence of feedback. The left part of the equatioBhonon or lattice system—and the two are thermally con-
represents a low pass system with transfer function nected by a thermal conductivi, . We assume for mod-

els derived in this paper that the detector resistance responds
to the temperature of its electron system and that the Joule
power of the bias is dissipated there. For economy of presen-
The input consists of an external inpit minus the output  tation, the models derived here assume the input power en-
itself modified by the transfer functioBerr. This is a typi-  ters through the absorber phonon system, which is then ther-
cal feedback system represented by the block diagram of Fignally connected to the thermometer lattice and further to the
6, where we also included the conversiondof to AX. If heat sink through the thermal conductiviy (see Fig. 7.

we now solve the block diagram using the block diagramThere are important classes of detectors where signal power
algebra and Eq30), we obtain is absorbed directly in the electron system of the thermom-
eter or absorber, and the primary thermal path to the heat

(33

AX(w)= GiG ! C XaTA” sink could be from the absorber lattice or either electron
ETF jo— system. In the general case, these all result in different ther-
G+Gere mal circuits, and the block diagrams must be modified ac-
1 1 XaAy cordingly. In the approximation of this section, the phonon
= - W(w), (34 system includes both the absorber and the phonons in the
Gett L+joress T

thermometer(we will discuss later the case of a decoupled
absorber.

In equilibrium with no external power, the electron sys-
tem is at a higher temperature than the phonon system is and
i . the Joule power flows from the electron system to the pho-

A first-order correction to the standard theory of bolom-p,oy system and from there to the heat sink. The equilibrium
eters and microcalorimeters is the introduction of tiod- _ temperature of the two systems without any signal power
electron modelThe model assumes that the thermal coupling, jied can be calculated in a way similar to that used for the

between electrons and lattice in the sensor at low temper%-lmme model described in the previous paragraph. As re-

ported in the literature, the thermal conductivity between
electrons and phonons can be described as a power law of

which is the same expression of Hg1).

IIl. HOT-ELECTRON MODEL

we), 11 AT@) | X-a-Ay | AX(@) the electron temperatufg, (Refs. 10 and 1)t
= G 1+ jot T
— Ge.=GoeTre. (35)
ETF e el ..
From the definition of thermal conductivity, we also
FIG. 6. Block diagram representation of a detector. have
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dP

Gel =Ty (36)

and if we combine the two and integrate from the lattice
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We already calculated the change in Joule poErin
Eqgs.(9) and(10), which in the hot-electron case depends on
the change in electron temperatx@,:

temperaturel, to the equilibrium electron temperatufe,, AP=—GCereATe, (43
we obtain and therefore
B
ot1_ Bet o1 e
The = G P(Te)+ TP, (37) AT.=— AT
Oe B GETF
T e+ JR—
where we explicitly indicated the dependence of the pdwer © Goe
on the electron temperatufg . The equilibrium temperature Goi(T)
of the lattice system is still determined by Ed) which, in —— el AT
Go (To)+G !
this case, can be written as el(Te ETF
G ((T)) 1
pH1 == AT\ =Ag AT 44
(TP 1-Tg" )= S5 =P(To). (39 Ger(T | G o1 Pl (8
Ge.1(Te)

Equations(37) and (38) represent a system with two vari- ) ) o
ablesT, and T, that can be solved numerically. where G¢.(T,) is the electron-lattice thermal conductivity

Here we are considering detectors where the externdialculated at the electron temperatu@.,(T,) is the
power is absorbed in the phonon system, and the Sensitivi@lectron-Iattlce thermal conductivity calculated at the lattice
of the detector can be strongly affected by the reduced sef€mperature, and

sitivity of T, to changes i, introduced by the equilibrium AT, G (T) 1
difference of these temperatures and nonlinear nature of Ae-lzﬁ: Goy(To) G (45
G . We consider these effects in two steps. A first approxi- b Fellle %

e-l\le

mation is to assume that the heat capacity of the electron
system is negligible. This case can be solved easily, and it ifhe quantityA,, is adimensional and represents the tem-
sufficient in many cases. We will then derive the generaperature sensitivity of the thermometer. Whap,=1, the
result forC.#0. thermometer is completely sensitive to temperature changes
C,=0 in the lattice system, whef,,=0, the thermometer is com-
pletely insensitive to temperature changes in the lattice.
If the electron system heat capacily can be neglected, We now want to represent the detector using the block
the dependence of the electron temperature on the lattic§iagram algebra. The detector behavior is described by Egs.

temperature is simply determined by E@7). When the  (18), (31), and(44), which in the frequency domain can be
temperature of the lattice system changesAdly the tem-  \ritten as

perature of the electron system will instantly changeAdy,

A. Hot-electron model with

and Eq.(37) becomes JoCAT +GAT|=W—Gg1eATe, (46)
Bot1 AT, =A, AT, 47
(Tt AT)Pet 1= G—OeP(Te+ AT+ (T, +AT))PetL, and
(39 XaAy,
If we subtract Eq(37) from Eq.(39) we obtain AX= T, ATe. (48)

Bet1

Converting these three equations in block diagram algebra
?[P(Te"" ATe)—P(Te)]
e

and connecting the blocks of the algebra together we obtain
the representation of Fig(®. With some simple algebra, the
diagram is equivalent to that of Fig(l8, and considering
that Ggrex ¢, the hot-electron model with negligible heat
capacity of the electron system is then equivalent to the stan-
dard model with the substitutions

(Te+ ATg)Pert-Tle =

H(T+AT)Per =T et (40

Assuming tha\ T,<T, andAT,;<T, we can expand Eq.
(40) to lowest order iPAT,/T, andAT,/T,, obtaining

AT B
(1-}-(,86-!— 1)T_ee T§e+l_T§e+l a— agii=Aea, (49)
T—Te, (50)
_ﬂe‘l'l AT| Bet1 Be+1 o
=G AP+| 1+ (Bt 1)T Tre " =T/e ", (41) and therefore the responsivity of the detector becomes
Oe |

_ 1 Ae | XAy
" (G+AeiGerp) (1+jwrery) Te

with 7¢¢=C,/(G+ A, GeTr), WhereC, is the lattice heat
capacity.

which reduces to

S(w) (51)

AP
TPe ATe=——+TPe AT,

Go “2
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W(®)y 1 1 ATl(m)|A—|ATe(co) X-a-Agy | AX@) AT, (@) G (T)|= 1 1 AT, (@)
_T G 1+ jot [2el] Te el ~ Ge—l(Te) 1+j(,)'|;e_l
GETF
[LrETF] P
ETF
(a)

FIG. 9. Representation of the electron system in the hot-electron model with
C.#0.

W(m)+ 1 1 ATI(@) | X-Agp-o-Agy| AX(®)

G 1+ jot Te

The behavior of the lattice system is still regulated by
Egs.(5), (7), and(8), with the substitutions o€, for C and
of T, for T, i.e.,

d(AT))

(b)

FIG. 8. Block diagram representation of a detector using the hot-electron  C,
model with C,=0. (a) Block diagram as derived from the equations that dt

describe the detector. Notice that the representation of the ETF as acting : :
the lattice system of the sensor is due to the fact that we are assuming tr?re;the powerP, is the power rowmg from the electron system

C,=0. In general, ifC.#0, the ETF is an electric effect and acts on the {0 the lattice system through the thermal conductiity, :
electron system(b) Equivalent representation to highlight the effect of the

Te
term Aq, . P|=f Ge(THdT'. (59)
T
Therefore,
B. Hot-electron model with C ,#0 To+AT, T/ +AT,

If the heat capacity of the electron system is not negli- AP= f . Ge(THdT" = fﬂ Ge(T7)dT",
gible, the electron temperature is defiféd analogy to Eg. (59
(5] by which, considering the expression of E85) for the thermal

dT, e ) ) conductivity and expanding the result to lowest order in

Ceﬁ“‘ﬁ Ge(T)dT' =P(Te), (52 AT./T,andAT,/T,, becomes

|

with G, defined by Eq(35). What we are interested in is AP|=Ge (Te)ATe— Ge (T)AT,. (60)
the rise of the electron temperatutd . above equilibrium  Equation(57) then becomes
when the lattice temperature rises Byl,. Equation(52)

hen b d(AT))
then becomes Ci—gr— +G ATI=W+ G (Te)ATe— G (T)AT,.
d(T+AT TetATe
ce—( ot ATe +f Ge(TAT =P(Te+AT,). oV
dt Ti+AT) Equations(55) and(61) can be written in the frequency do-
(53 main as
Subtracting Eq(52) from Eq. (53) we obtain §0CATe+Goy(T)ATe=Go (T)AT,— GereATe
d(ATg)  (TetATe (62)
CeT+fTe Ge (T"dT and

T +AT, JoCAT|+G AT =W+ Ge (Te)ATe—Ge (T)AT],
— f G (THdT' =AP, (54) (63

_ n _ _ and are represented by the block diagram of Figal0rhe
which, using Eq.(35) and expanding the result to lowest diagram can be solved to obtain an analytical expression for

order inAT,/T, andAT, /T, becomes the detector responsivity. In Figs. (1) and 1@c) we show
d(AT,) two intermediate steps in the solution of the block diagram
CeTe+Ge-l(Te)ATe: Ge(T)AT, — GgreATe, algebra. The detector responsivity is then equal to
55 1
ith Ge1r defined by Eq(43). Th fE (55; ') S()= c
with Ggrr defined by Eq(43). The system of Eq(55) is b e ) Gl L
represented by the block diagram of Fig. 9 with, Cerrfed| 1 1 G Clltjorn)(l+jor)
=C./Gg(Te), which has the solution Ao XaA,
XT—. (64)
o - e
ATe(w) Ae_| 1+ijeAT|, (56)

with 7=C,/G. Notice that in the case &@.=0 this expres-
with 7,=C./[Ga.(Te) + Gere] and A, defined by Eq. sion reduces to Eq51), i.e., the hot-electron model with
(45). Notice that Eq(56) reduces to Eq(44) if C,=0. negligible electron heat capacity, as expected.
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11 |av@fg_ ol 1 1 |AT.@) [ X-a-A, | AX@)
G 1+jot b 3Gy (T) 1+jot, T,

@ G
_Ge-l(Te)
FIG. 10. Block diagram representation
W(®)y 1 1 AT (@) Ao |AT(®) | X-a-Ay | AX(@) of a detector using the hot electron
(HG+Ge (T 14— © 1+jor, . | model with C.# 0. (a) Block diagram
G+G,, (T as derived from the equations describ-
(b) ing the system.(b),(c) Intermediate
-G (T.) steps for the solution of the block dia-
Lol el gram representation.
1 1 Aet |aT, Xaa ] AX
WO G160 (T 1o € T, o] o 22
G+G_,(T) <
©
Moreover, in the case dby.—, i.e., where electrons In analogy to Eqs(23)—(27), we can also calculate the
and phonons can be thermally considered as a single systemlynamic impedance of the detector. We can write E§2)
the responsivity becomes and (63) without external powekV and explicitly using the
symbol AP for the change in Joule power.
1 XA, a )
= CAT+ G (T AT =G ((T))AT,+AP 66
S(w) (G+Gerp) . C,+C. T, (65) JoleAle el(Te)ATe el(TDAT, (66)
1 G Gerr and
. - . jwC AT +GAT| =G (To)AT— G ((T)AT,. 6
This is just the ideal responsivity of a bolometer or micro- Jotat 1=Cei(Te)ATe=Ge(TDAT . (67)
calorimeter with thermal conductivitys, temperatureT,, Combining Egs(1), (23), (25), (66), and(67), we then
and heat capacit¢=C,+C,. obtain

P
[G+Ge(T)+] a)C|]( Gei(Te) +jowCet T_a) — G (Te) Ge(T))

Z(w)=R (68)

= .
[G+Ge(T)+] wCI]( Gei(Te) +jwCe— T_“) —Ge(Te) Ge(T))

IV. NOISE SOURCES AX(w) equal to the output generated by the noise. The NEP

Th | noi that affect th ‘ is calculated as the ratio between the outpXt(w) gener-
ere are several noise sources that afiect the periog, . by the noise and the responsivity of the deteS(ar).
mance of bolometers and microcalorimeters, most of whic

. . Wn the case of bolometers, the NEP directly quantifies the
have already been taken into account by Mather in f982'Iimit of the bolometer in detecting a power signal at fre-

These include the Johnson noise of the sensor, the therm%encyw_ In the case of microcalorimeters the NEP is re-

Emste QUI(e t? the ]'Eherrgal link ber:ween thg gﬁtegtor: and Mireq to the best possible energy resolution of the microcalo-
eat sink(also referred to as phonon nojisg¢he Johnson erimeter by the expressidn

noise of the load resistor used in the bias circuit, and th

noise of the readout electroni@mplifier noise. In his paper 1

Mather also mentions a fLhoise contribution that seems to AE ns= . (69
be more related to the sensor characteristics. This noise was fw 2dw

studied and quantified for silicon-implanted thermistors by o 7NEP( )

Hanet al.in 1998
The effect of the noise on the detector performance is Here we want to analyze the effect of the noise on the
generally quantified by th@oise equivalent powefNEP). detector performance in the picture of the hot-electron
The NEP corresponds to the powéf(w) that would be model. The introduction of the hot-electron model has two
necessary as input of the detector to generate an outputain effects: it changes the NEP of the noise sources and it
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Z
Gy (1) | )1/(03) €amp(®@)
+
Pr, (@) +B, (@) er,, (@)
1 1 |ATe(®) X-a-Ay +£+ AX(®)
G, (T) 1+ jot,, T,
GETF
(@)
€ amp(m)
+
Py (@) exy, (@)
+
Pp; (@) | 1 X-o-Agr |4 % AX(®)
b G T

FIG. 11. Block diagram representation of the noise in a detector using the hot-electron(enaehel equivalent representation for the ideal mabglNotice
that if the outputX is a current, the load resistor noise that adds to the output is represenitﬁp by

introduces a new noise term, which is the thermal noise duwherek,, is the Boltzmann constant ak@T’) is the function
to the thermal fluctuations between the lattice and electrodescribing the temperature dependence of the thermal con-
systems. ductivity of the heat link material.
The Johnson noise of the sensor resistance is simply de-
A. Effect of the hot-electron model on the noise scribed by
The different noise contributions affect the detector in
different ways. In particular, the thermal noise correspondsto €= VAK,TeR. (71)
a power noise on the lattice system. The Johnson noise is
calculated as a voltage fluctuation but can be introduced in
the model as an electron temperature noise term. The 1/
noise is calculated as a fluctuation in the value of the resis-
tance but can be described as electron temperature noise term
as well. The load resistor noise can be described as a noise R
that adds to the output signal and also generates a Joule €r = V4KyTsRI =—— RIR’ (72
power noise on the electron system. The amplifier noise adds
directly to the output signal. In Fig. 18) the contributions of
the different noise terms in the microcalorimeter are shownwhere we assumed that the electrical circuit is heat sunk at
The same noise sources in the ideal model scenario atbe temperaturdg. This noise adds directly to the output
shown in Fig. 11b).° Dimensionally, the thermal noige,, is ~ signal as a voltager or as a currenty =eg /R, and gen-
a power spectral densitfin units of W/\Hz), the Johnson erates Joule power noise in the electron syskm=2leg
noisee; and the load resistor noisg; are voltage spectral (see Fig. 11
densities ¥/\Hz), the 1f noise (AR/R)l,f has dimensions The 1f noise is, by definition, frequency dependent, and
Hz %2, and the amplifier noise,m, has the dimension of it is usually described as a fluctuation in the value of the
the transducer outp divided by square root of frequency resistance:
(V/\Hz or A/\JHz). The thermal noise was calculated quan-
titatively by Mather in 1982(assuming diffusive thermal

The load resistor noise can be represented by a voltage
noise across the detector, equal to

conductivity and is equal to (A_R) B 1 73
T (T'K(T"))? 12 Ry Vo
| ITs (TIk(T)))?
Pi=4k,GT} Tk(T') ' (70) Solving the block diagram of Fig. 11 independently for
f WdT’ each noise contribution and using the expressioS(af) of
T KT

Eq. (64) we obtain
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NERn=Pin, (74 P=I'R
4kae T§e+l . . Cel
NEP;= b2 TP Glt+jom)(l+jwre) W
|
¢ Ge-l
T G,
er, 2IeRL G
NEPRL S(w) Ge-I(TI)[G Ge—I(TI) chl]v (76)
B
AR| T, T.° 7
NEaﬁ=(7;) :f—%; G(l+jon)(1+jwre,) HEAT SINK
ur TI FIG. 12. Thermal sketch of a bolometer or microcalorimeter in the case of
T'Be absorber decoupling and hot-electron model.
. |
tioCep |, (77
c NEP,.= P ——fi—41+' ) 82)
am =

Notice that the NEP due to the readout electronics and twhere r, has been previously defined as=C,/G. This ex-
the load resistor are the only terms that depend on the elegpression does not depend @p and therefore is valid also
trothermal feedback. Therefore, if these terms are small confor the caseC.=0. Moreover, ifGye— =, this term is zero,
pared to the other contributions, as is usually the case, thes expected.
electro-thermal feedback changes the time constant of the
detector, but does not affect N&H.

The express_ion of the_ NEP_in the case of negl_igible elecy, ABSORBER DECOUPLING
tron heat capacity is easily derived usi@g=0. Notice that
in the limit of Goe— 0, Egs.(74) and(75) reduce to the ideal Another aspect that may affect the performance of bo-
expressions calculated by Mathfer: lometers and microcalorimeters that we want to study is the

effect of the absorber thermal conductivity. Most of the de-

NERn=Pun, (79 tectors are built with absorber and sensor as different entities
JAKT. connected by epoxy or other material with a thermal conduc-
ble

NEP=

Teg(1+jwc'+Ce)_ (80)  tivity G,. Depending on the experimental setup, there are
JPa G different configurations that must be used to describe the

thermal system. For example, the thermal link to the heat
B. Thermal noise due to hot-electron decoupling sink can be through the absorber or the thermometer and the

. _ absorber can be in thermal connection with the lattice system
The hot-electron model also introduces an extra nois@yhen an electrical insulating material is usen the elec-

term in addition to those just considered. This is due toygp system(when a conducting material is uged

power fluctuations between the lattice and electron system. \yhat we want to analyze here is the case in which the
The magnitude of these fluctuations depends in part on thgetector is connected to the heat sink through the thermom-
physics of the electron-phonon decoupling. A simple expresgter attice system and the absorber is connected to the lattice
sion appropriate for “radiative” energy transfer was calcu- system of the thermometer. In this case, the external power

lated by Boyle and Rodger in 195&ef. 13: hits the absorber and is released to the lattice system and
s then detected in the electron systésee Fig. 12 We assume
P, — \/Zk Gy (T )TeJr [ 81) that the absorber has a heat capagity. Notice that the

he bTelt el 3 analytical tools that we give here can be easily used to quan-

¢ tify the behavior of any other configuration.

A more rigorous expression for electron-phonon decouplingA R ity and d . d
was also calculated by Golwatd al. in 1997 (Ref. 16. - Responsivity and dynamic impedance

Notice that these fluctuations transport power from the In equilibrium, with no other power input than the Joule
lattice system to the electron system and vice versa; therggower in the sensor, there is no power flow through the ther-
fore, if a powerP;. adds to the electron system, the samemal link G, and therefore the temperature of the absorber is
power Py is subtracted from the lattice system. The effect isequal to the lattice temperatufg=T, . If an external power
shown in the block diagram of Fig. 11. Solving the block W is applied to the absorber, the detector is described in the
diagram for the hot electron noise we obtain frequency domain by the set of equations
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I_Ge-l(Te)
Ww(o) T
o~ 1 1 P a(+ é__l_CATl(m)G (Tl 1 1 AT (@)]| X -a- Ay |AX(@)
—~ . . -1 1 N
TG, 1+jort, a 11+_|(D€:- ¢ |Gy (T) 1+ jot,, T,
G, ' |GETFI

FIG. 13. Block diagram representation of a detector with a finite thermal conductivity between absorber and lattice system. We have used t8¢ notation
=G+ G,+G,,(T)). Notice that this implicitly integrates the heat relief for the lattice system provided by the electron and absorber decoupling into the lattice
response function. This is different from what was done before in Fig. 10, where the heat relief was explicitly reported in the block diagram @&k a feedba
effect. The two descriptions are equivalent. We used the implicit description here to compact the block diagram algebra.

JwC AT+ GAT,=W+G,AT,, (83 If we want to build the block diagram associated with these
three equations, we can consider the left side of the equations
j@C AT, +[G+G,+ G (T)]AT, as the response function of the three syst¢alsorber, lat-
tice, electronsand the right side as the input to each system.
=GaAT,+ G (Te)ATe, (84)  Connecting the three systems gives the block diagram of

Fig. 13. The diagram can be solved to obtain the detector
JOCAT+ G (T)ATe=Ge (T)AT,—Ge7pATe. (85 responsivity

1 Ao XaAy
wCa(ltjore) +(1+joTe)(1+jwra)[G+Ge (T) +jwCi ]~ Ge(Te)Ae (1 tjwrs)  Te '
with 7,=C,/G,. Notice that ifG,— =, this expression reduces to the one without absorber decoupling for a detector with

lattice heat capacitZ,=C,+C,.
Using Egs.(1), (23), (25), and(83)—(85), we can also calculate the detector dynamic impedance

Sw)= ; (86)

. : : . Pa :
{[G+Ge-I(TI)+] oCl(1+joTy) +cha}( Gei(Te) +jwCet T_ —Ge(Te)Ge(TN(1+jwTy)
Z(0)=R PZ . (87)
{[G+Ge.|(T|)+iwCl](1+J'wTa)+ija}(Ge.l(Te)ﬂwCe— T—) ~Ge(Te)Ge(TH(1+jwTa)
e
|
B. Noise contribution Figure 14 shows the block diagram of the detector with

As in the hot-electron model of the thermometer. theret€ Noise sources evident. As in the hot electron model, the

are two effects introduced by the thermal link between the'oise due to the link between absorber and lattice can be
absorber and lattice system. The first effect is that the redescribed as a power flow out of the absorber and into the
sponse of the detector is different; therefore, the NEP’s dudattice or vice versa. This power has same vaRjg but

to thermal, Johnson, fi/ load resistor, amplifier, and hot- opposite sign at the two ends of the link. Since the tempera-
electron noise are different. The second effect is the introture of absorber and lattice systems are equal, the value of
duction of an extra noise term due to the power fluctuations is simply

between absorber and lattice.

Py, (@) -G (T,
o o
- ©
ht_el_ Py, (@)
_ ¥
B (@) Phe(m)
L@ 1 AT @y [ 1 1 |ATe)
1+jot, el TGy (T 1+ jorr,

G
ETF

FIG. 14. Block diagram representation of noise in a detector with a finite thermal conductivity between absorber and lattice system.
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P.= V4k,G,T?. (88)

Solving the block diagram of Fig. 14 independently for
each noise source we obtain

NERh=Pu(1+joT,),

NEP,= \/FbTeTfe+1

7N pa? TP
Tﬁe

. . . I,
-1-](Jz)Ta)(1+ja)T|)]-|-(1-1-1(1)7'51)_|_—ﬁejwCe
e

(89

(It joTe)[jwCa+G(1

(90
TPe

Tele
T,Be

S (1+jote))[jwCa+G(1
1/f |

AR
NEPys=| &~

TP
. . . -
+jw7'a)(l+jwr,)]+(1+jwra)%jwce
e

(9D
er 2leg
L L. .
NEPRL—%+m[1wca+(l+1wra)(6
+Ge (T +jwC))], (92
NEPamp:eamp/S(w): (93
NER == [ wCut G(1+jwra)(1+] 0m)]
he Gey(T)) Jwly JoTy JoT)],
(94
NER,=P,jwT,. (95)

Notice again that iiG,—, these expressions are equal to
the hot-electron expressions for a detector with lattice heat
capacityC,+ C, and the absorber NEP is equal to zero.

VI. NONOHMIC BEHAVIOR OF THE THERMOMETER
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where
T iR | JR Te dR
a|_ﬁo—,_-|—ela | ﬁHT, \Y R&_-rev,
V JR
Bv=R v o (98)
e

Using Eq.(96) or (97) is equivalent, and it is always possible
to go from one notation to the other using Ohm’s laws:

B

B
’BV_—1+ﬁ| ,

a

aV=1+—[_3|. (99)

The only terms in our model that are affected by the
nonohmic behavior are the electrothermal feedback term
Gete and the transducer responsivily, . We can calculate
them assuming the bias circuit of Fig. 2:

P=1°R=AP=2IR Al +1? AR, (100

| = F:/Lbf; -~ = RAR (10D
and

V=Vpias— IRL=AV=—R_ Al. (102
Using Eq.(96) we obtain

AP=—Eia| AT, (103

Te RL+R(1+3))

AV R. AT,

V TURGRAIA) T (109
and

A R AT, (105

| YR ARIA+B) T

The model describing a nonohmic thermometer is there-
fore identical to that describing a linear one, with the
substitution

Another effect that may change the performance of a

detector is the nonohmic behavior of the thermometer; i.e.,

the thermometer resistance may not depend only on the ther-
mometer electron temperature, but also on the curfent
voltage that is used to readout the temperature chaiye:
=R(T,,1).}" This effect is particularly strong when TES
thermometers are usédiThe responsivity of a detector with
nonohmic thermometer has already been calculated by
Mather in 1984(Ref. 17 and its effect on TES microcalo-
rimeters was studied in detail by Lindeman in 200Ref.
13). A nonohmic thermometer can also be easily included in
our model. If the resistance of the thermometer depends on
the readout signal, we can write

a—ap, (106)
6P RTR (107
ETF T, RL+R(1+8) "
and
R
=, (108
R +R(1+3))
for voltage readout, or
R
Ap=— ———— (109

U R AR(1FB)

for current readout. With this substitution in the equations

R R
Te I
or, equivalently,
R R
dR= T_ea’vdTe+ vﬁvdv, (97)

that we derived previously in the paper, it is possible to pre-
dict both responsivity and noise in the detector.

We can also use Eq96) to calculate the dynamic im-
pedance of the detector. In the case of absorber and hot-
electron decoupling we obtain
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Z(w)=R(B+1)

. . . . Pa, .
IG+Ge((T)+jwC](1+jwr,) +] wca}( Ge.l(Te) +jwCet+ W) —Ge(Te)Ge(TH(1+ jwTy)
e
X
. . . . Pa .
{[G+ Ge(T)+joCl(1+jowry) +] wCa}( Ge(Te)+jwCe— T_) —Ge(Te)Ge(TN(1+jwTy)
e
(110
This reduces to
. . Pa,
[C+Ge(T)+]jwC]| Ge(Te) +jwCet —————=5| — Get(Te) G (T)
Te(Bi+1)
Z(w)=R(Bi+1) - , (112
. . |
[CG+Ge (T)) +] wC|]( Ge.l(Te) TjwCe— T_) —Ge(Te)Geui(T)
e
|
for hot-electron decoupling only, and to (89—(95) to calculated the expected noise spectra. The sum
Pa of these can be compared with the measured noise spectrum,

14— +joT as shown in Fig. 15. In the model all the input parameters are
Z(w0)=R(B,+1) GT(p+1) (112 fixed to the values measured experimentally. The only value
! 1- Pa; ' that was not available and that has been adjusted during the
ﬁﬂ‘” calculation of the theoretical noise is the stray capacitance

for the ideal model betweeq gate and source of the figld effect transidt&T) .
We do not knoW of a rigorous general method for deriV_electronlcs. The value of 5 pF obtained for the stray capaci-

. L ) ) tance is in good agreement with typical values for the FET

ing the Johnson noise in a nonohmic resistor. Nor does ther, mplifiers used in the measurement. The agreement between

seem to be a single definite scheme for determining the N&he model and the measurement is very good.

response of the detector to this fundamental thermal noise, The data set has been acquired at a heat sink temperature
since It Is an internal noise _generatec_j in the nonohmic 'eSISS5t 65 mK. The model predicts an equilibrium temperature of
tor, and it is not clear how it should itself affect the nonoh-

micity of the resistor. We are investigating this further, but77 mK and, through Ed69), an energy resolution of 8.4 eV,

. 0 be compared with the measured values of 78 mK and 8.65
for the present have assumed that the Johnson noise can

. . The agreement is well within the accuracy of the input
represented as a random voltage source with power spectrﬁl rameters in the model and demonstrates the power of the
density &, TR in series with the nonohmic resistance and

. . ‘model in predicting detector performance.
that the Johnson fluctuations in the source cause the resis- P 9 P

tance to fluctuate due to the current dependence of the resis-
tor. This results in the same suppression of the Johnson noise 107 ¢
due to the current dependence of the resistance as occurs for :
external signals and noise if the nonohmic resistance is ex-
pressed aR(T,,l). This uncertaintyor dependence on the
details of the physigsapplies only to the Johnson noise of
the sensor. Small-signal responsivities to all external sources
of signal and noise are unambiguous, so it is only the detec-
tor Johnson noise contribution to the NEP that is uncertain.

Noise (V- Hz'*)

VIl. RESULTS 10

To verify our results we simulated the performance of an
existing microcalorimeter and compared the results with data
from the detector. We considered a microcalorimeter used in 10 e 0
the development phase of the X-Ray Spectrom@{&s) for 10 100 1000
the Astro-E satellité® The detector that we used for the com- Frequency (Hz)
pia”so.”. Was. part of a>66 te.St array of microcalorimeters FIG. 15. Comparison between the noise from>66XRS array pixelcour-
with S|I|C(_)n-|mplanted thermistors and HgTe absorbers._quSy of Caroline K. Stah)eand our model. The model includes the effect of
chose this detector because the array has been studied tia decoupling between hot electrons and phonons in the sensor and be-

great detail and the characteristics of the pixels are weliween absorber and sensor. The noise sources that are included are Johnson
known npise of the sensor, thermal nois_e due to the link between detector an_d heat
. sink, thermal noise due to the link between phonons and electrons in the

We first used Eqg37) and(38) to calculate the expected gensor, thermal noise due to the link between absorber and sensor, Johnson

equilibrium temperature of the detector. We then used Eqshoise of the load resistor, fLhoise, and noise of the readout electronics.
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