Thermal detectors as x-ray spectrometers
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We show that sensitive thermal detectors should be useful for measuring very small energy pulses,
such as those produced by the absorption of x-ray photons. The measurement uncertainty can be
very small, making the technique promising for high resolution nondispersive x-ray spectroscopy.
We derive the limits to the energy resolution of such thermal detectors. We use these to find the
resolution to be expected for a detector suitable for x-ray spectroscopy in the 100-10 000 eV
range. If there is no noise in the thermalization of the x ray, resolution better than 1 eV full width
at half maximum (FWHM) is possible for detectors operating at 0.1 X. Energy loss in the
conversion of the photon energy to heat is a potential problem. Statistical fluctuations of lost
energy would reduce the energy resolution of the detector. The loss mechanisms may include
emission of photons or electrons, or the trapping of energy in long-lived metastable states.
Fluctuations in the phonon spectrum could also limit the resolution if phonon relaxation times are
very long. We give conceptual solutions for each of these possible problems.

I. INTRODUCTION

An ultimate goal for any spectrometer is to offer high
resolving power and throughput simuitaneously over a wide
energy range. Silicon solid-state diode detectors used as x-
ray spectrometers have good efficiency but their resolution is
only 100-200 eV. Wavelength dispersive spectrometers offer
resolution <10 eV, but have low throughputs. A thermal
detector operating at cryogenic temperatures can offer the
high efficiency of the solid-state detector and resolution
comparable to that of dispersive spectrometers.

Bolometers have been used for many years as infrared
detectors.! Recent work®™ shows that at temperatures as
low as 0.32 K, the dominant noise in properly constructed
devices is due to the thermodynamic fluctuations in the de-
vice itself.

The energy sensitivity of a thermal detector scales as

TJC, where T'is the operating temperature and C the detec-
tor heat capacity. Practical designs for detectors can be made
using the substantial body of low-temperature data existing
in the literature. An operating temperature of 0.1 K has been
chosen as the design temperature because it permits the de-
sired resolution, and it can easily be achieved with an adiaba-
tic demagnetization refrigerator operating with a 2 X heat
sink. Also, experimental data show that the heat capacities
of many of our candidate materials decline quite slowly or
actually increase below 0.1 K.

We will demonstrate that the noise in the front end am-
plifier junction field-effect transistor (JFET) and load resis-
tor need not seriously affect the resolution.

The performance of a bolometer as an x-ray spectrom-
eter depends on the noiseless conversion of the x ray to heat.
If some fraction of the energy is lost, that fraction need not be
exactly constant from photon to photon. This will degrade
the resolution of the spectrometer. We will discuss potential
loss mechanisms and techniques for combating them.

Il. THEORY OF OPERATION
A typical bolometer detector has three parts: an energy
absorber, a semiconducting thermometer, and a support
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structure to carry away the applied heat and establish elec-
trical contact to the thermometer. A design for such a detec-
tor is given in Fig. 1 and discussed in Sec. IV. The detector
temperature is measured by applying a dc bias voltage to the
series combination of the thermometer and a load resistor.
Small variations in the thermistor voltage are measured us-
ing a low noise amplifier, whose first stage is usually a JFET
source follower mounted near the detector but operating at
about 80 K.

The basic theory of these detectors has been summar-
ized."* A more complete theory has been given by Mather,®
and optimization for their use as power detectors has been
carried out.”

A. Resolution

An order of magnitude estimate of the possible energy
resolution is given by the thermodynamic energy fluctu-
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FIG. 1. Concept for 1.1-eV FWHM spectrometer. Heat capacities of com-
ponent materials are listed in Table I. The design of the device is similar to
devices described in Ref. 1, which gives a detailed discussion of the fabrica-
tion procedure.
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ations in the detector. From the derivatives of the partition
function for a system, one finds easily that

QU?) =kyT?C, (1)
regardless of the details of the system. Here, 4 U is the spon-
taneous energy fluctuation of the detector, T its tempera-
ture, and C its heat capacity, and kp is Boltzmann’s con-
stant. One can understand this in a handwaving way by
saying that the effective number of phonon modes in the
detector is N = C /kp, the typical phonon mode has quan-
tum occupation number 1, rms fluctuation of ! phonon, and
mean energy of kT, Then the mean square energy fluctuation
is (kg T)*N = k T?C. We show below that this expression
differs from the resolution achievable in practice only by a
numerical factor of ~2.

In addition to these thermodynamic fiuctuations, or
phonon noise, a more complete derivation of the energy reso-
lution must consider Johnson noise in the thermistor, ther-
mistor responsivity, the effects of temperature gradients in
the thermal link produced by the applied bias power, and
optimization of the signal shaping filters. We first discuss an
approximate solution to this problem in the time domain to
give a clear illustration of the nature of these effects. The
exact solution is reached more readily from an analysis in the
frequency domain, for which we will adapt the results of
Refs. 6 and 7 to the case where the input signal is assumed to
be a delta function.

‘We model the detector as an absorber of heat capacity C
with a temperature sensor attached. The absorber is con-
nected to the heat sink through a link of thermal conduc-
tance G. An x-ray photon of energy U incident on the ab-
sorber will be absorbed and thermalized. The temperature of
the detector element rises by AT = U /C following the ab-
sorption of the photon. The heat flows to the heat sink
through the conductive link and the detector element ap-
proaches the bath temperature exponentially with a time
constant 7=C /G. In a practical detector, the time constant
of the output pulse is changed from the physical time con-
stant 7 by electrothermal feedback to an effective time con-
stant 7, .° Therefore in the time domain, an impulse of energy
U at time ¢ = 0 produces a decaying exponential pulse of

voltage

Vit)= g3 - (2)

where S(0) is the detector responsivity at zero frequency
{measured in V/W).

Given the output puise shape following the absorption
of an x ray, the choice of an optimal shaping filter depends on
the spectral characteristics of the detector noise. In this in-
structive example we will devise a solution for a white noise
spectrum. For practical detectors using semiconducting
thermistors, the assumption of white noise is quite good; the
phonon noise and Johnson noise powers have substantial
frequency dependence, but their quadrature sum does not.®
We will divide our exponential pulse into intervals of width
At. The estimates of U in each interva} will be averaged with
weights proportional to the squares of their signal to noise
ratios. Since the noise is white, each of these intervals is a
statistically independent estimator of the signal. The weight-
ed average of all these is the best estimator of the total ener-
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gy. The expression for the total signal derived in this way is

2Te © e‘—r/re

=50 b T V(¢ )dt. (3)

In a digital signal processor, the integral can be done very
easily. In the analog electronics domain, it would require
passing the signal through a filter which is a time reversed
(noncausal) single pole RC low-pass filter. This ideal filter
has the same noise bandwidth as the ordinary RC filter,
B = {4r,)~ . Since the detector has a white noise with spec-
tral density ¢2, the rms output of the filter in the absence of
pulses is 27

4aU,_ ., =e, B
\[_S(O)

where the noise equivalent power of the detector at zero fre-
quency is defined by NEP(0) = ¢, /S (0). This analysis impli-
citly assumes that the moment of arrival of the puise is
known. For high signal-to-noise pulses, this assumption is
justified.

For the actual case in which the noise is not exactly
white, the analysis is done more readily in the frequency
domain. Here, a measurement of the noise in each frequency
interval Af is statistically independent of measurements in
other intervals as long as the noise is stationary.

The result in Eq. (3) can be written in the frequency

domain
w -172

AUy =( | 24 ) . (5)

o NEP?(f)

For NEP?( f) = NEP0)(1 + w?Z), the white noise voltage
case, this yields the same result as above. This formula gives
greatest weight to frequency regions where the NEP is small.
In the frequency domain, the random temperature variation
of the elernent givesrise to NEPZ, .., = 4k, T?G (foranele-
ment at thermal equilibrium), where G is the thermal con-
ductance to the heat sink, [t isindependent of frequency, so if
it were the limiting noise source over an extreme bandwidth
(much larger than 1/7,), the detector resolution could be
much smaller than (k, T'2C)"/% This possibility is not yet of
practical importance, since it requires temperature trans-
ducers much better than the semiconducting thermistor.
. Optimization

We wili now give detailed formulas for the NEP in the
icieal bolometer, proceed to the energy resolution, and finally
compute the optimum bias conditions and ultimate energy
resolution of the detector. This work is based directly on Ref.
6 and parallels similar optimization caiculations for infrared
detectors.’

The square of the NEP for the ideat detector, in which
amplifier noise and noise from the load resistor can be ne-
glected, can be written

= NEP(0) /7., )

NEP? = NEP,.... + NEP?. ..., (6)
where r
’ Ik (t ') 2
NEP?, =N, =4k GT?f (-—-——’ )d:'
NEP honon 1 B . \Tk(T)
T ’
k) gy, ™
r. k(T)
NEP.%ohnson = NZ(} + 0)27'2), (8)

and
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)

N, = 4k, TP(Z + R)z.
Z
In these formulas, terms are defined as follows: T is the ele-
ment temperature, T, is the heat sink temperature, G is the
differential thermal conductance of the heat link defined as
the derivative of the conducted power with respect to ele-
ment temperature 7, and k is the function describing the
temperature dependence of the thermal conductivity of the
heat link material. In the Johnson noise formula, P is the dc
bias power dissipated in the element, R is its resistance
(= E /I), where E is the bias voltage and [/ is the bias current,
Z is the differential impedance dE /dI, and A is given by 4
= — (dlog R /d log T'). It is assumed here that R is a func-
tion of temperature alone. The physical time constant 7 is
given by C /G, and is distinct from the effective time constant
7, that governs the pulse response in Eq. (2).
Since the frequency dependence of the terms in NEP?
are simple, the energy resolution can be computed easily as

AU s =7'”2[N2(N1 +N2)]”4- (10)

To proceed further, we need to parametrize electrical
and thermal characteristics of the detector. We shalf assume
that the heat capacity, the resistance of the detector, and the
thermal conductivity of the support wires are power laws in
temperature: the heat capacity C = C, ¢, where C,, is the
heat capacity at the bath temperature T, the reduced tem-
peratureis ¢t = T'/T,, the resistance is R = R, ¢ ~#, and the
heat link conductivity is k = k#® . Note that ¢ is not the time
t used in Eqgs. (2) and (3).

We now wish to determine N, and V, in terms of these
parameters. We take

:’;_:G = k(T) Uo dx/4 (x)] Coemy (11)

from Eq. (24) of Ref. 7 where A (x) is the cross-section area of
the link. Substituting P = EI = IR (T )into the heat balance
equation permits the calculation of static current-voltage
curves and the dynamic response to an energy impulse, and
leads to Eq. (2). Using Eq. (13), and the parametric represen-
tation for R (¢ ), extensive algebraic manipulation yields

Z+R _ _ Gr/P4 (12)
Z —R

and
P=GT(1—t~©+/(B 4+ 1), (13)

so that we can find
N, =4kyTP(GT /PA Y
=4k, TLt2G(B+ 1)/AY 1 —t ~ B+ 1), (14)
The value of N, is found more directly from the defining
integrals as
4k, TEGEY1—1 ~P+#) B4 1)
1= (3+2B)(1_t_(ﬁ+ll)
When these expressions are substituted into Eq. (10}, we
obtain the final formula

(15)

{ 2
AU, = 5[(163 T%C,) HB+ T

Az(l-t_(ﬁ"")
(l_t—(3+25))A2 1729172
1 16
x( + T2 ) j . (16)
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Note the very important fact that the thermal conductance
G and the time constants 7 and 7, have disappeared entirely
from the equation. This means that there is no sensitivity
penaity nor advantage to fast or slow detectors, and heat link
parameters may be chosen to satisfy other constraints (e.g.,
counting rates). Moreover, the resolution is a dimensionless
factor multiplying the fundamental thermodynamic fluctu-
ation (kz T2C,)'/2. Finally, it is important to note that as 4
approaches infinity, 4 U,,., tends to zero as 1/4 /2, confirm-
ing the statement made above that the measurement uncer-
tainty can be less than the thermodynamic energy fluctu-
ations of Eq. {1).

The detector-reduced temperature ¢ is the only variable
in Eq. (16) which is not already fixed by the available refrig-
erator (T¢) or the detector construction (Cy, 4, B, ¥). The
value of 7 is determined by the dc bias power applied. A
simple numerical optimization may be easily performed on
the expression, yielding both the desired operating tempera-
ture and the ultimate sensitivity given the constraints.

An optimum bias power exists because low values of ¢
correspond to low bias currents and low detector response,
reducing the signal below the level of the Johnson noise in
the thermometer resistance, while high values of ¢ increase
the random thermal fluctuation of the detector energy.

Values of 4 from 2 to 10 are typical for semiconducting
thermometers, although 4 = — 100 to — 1000 can be
achieved for superconducting transition-edge detectors.
Values of £ are typically 1 for metals, and 3 for dielectric
crystals, while ¥ will be 1 for normal metals and 3 for pure
dielectric crystals and for superconductors well below their
transition temperatures.

The results of the optimization for several values of ¥
and 3 are given in Fig. 2. The optimal temperature ¢ changes
only slightly with 4, and AU, = £ (kz T2C,)'/? is also a
weak function of 4 for 4> 2.

Hi. AMPLIFIER NOISE AND LOAD RESISTOR

The optimization we have carried out does not include
the amplifier noise contribution to total system noise. This
can be justified because for proper choice of detector resis-
tance and amplifier JFET, the amplifier noise can be made
small compared to the noise of the detector, even for detector
temperature as low as 0.1 K.

According to Mather’s noise theory,® the Johnson noise
of a bolometer can be reduced by electrothermal feedback
for wr < 1 by as much as 50%. However, in this frequency
range the detector also detects its phonon noise, so that the
total voltage noise in the signal band of the detector (w7 < 1)
is found to be greater than the Johnson noise in a resistor of
equal resistance operating at the same temperature. We will
compare this noise to that of the amplifier for two cases: {1)
where the bolometer’s resistance can be chosen to minimize
the effects of amplifier noise, and (2) where the bolometer
must be ~ 10 M£2 to prevent long electrical time constants
due to stray capacitance.

The JFETs typically used as bolometer amplifiers

(2N4867A) have voltage noise e,(f)=5x10"° V/yHz,
while measurements in our laboratory give a current noise

i,(f)<3x 107 A/YyHz. The value of input resistor for
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FIG. 2. Optimal detector performance and operating temperature as a func-
tionof A = — dlog R /d log T.t = T /T,is the fractional temperature rise
of the detector at the optimal operating point. C= Cy?, G = G,t*.
AU, = £(ky TEC,)'?, where AU, is the rms uncertainty in the mea-
surement of photon energy. Note £ is almost independent of £ and y. For
A<2f « A7 forA>2,£ « A 7'2 Notethatfor y = 1, there is less heat
capacity penalty for operating at higher 1, so the optimal value of t is higher
than for y = 3.

which the ratio of total amplifier noise to resistor Johnson
noise is a minimum can be shown tobe R, = e, /i, . For our
typical devices R,, ~ 1.7 X 10® £2. The Johnson noise is

e, f) = (4k, TR )2 V//Hz.
The corresponding total amplifier noise is

e f) = [(/IR* +€(f)]"/* V/{Hz. (18)

If we are free to choose R = R, and if our detector
noise temperature is 0.1 K, the amplifier voltage contribu-
tion is less than 25% of the detector noise. Added in quadra-
ture, it produces less than a 3% increase in system noise. If
we are forced to choose a resistance near 10 M2 for the
device, the amplifier noise voltage is 67% of the detector
noise, resulting in a 20% increase in system noise. These are
upper limits to the effects of amplifier noise, since in practice
the bias power can be adjusted slightly to a point which is
optimum in the presence of the additional voltage noise.

Load resistor noise cannot be avoided, but can be made
negligible by choosing the resistance much larger than the
detector resistance. If the load resistor is 0 times the detec-
tor resistance and operates at the detector heat sink tempera-
ture, it increases detector noise about 5%. A more complete
discussion of the load resistor noise contribution is given in
Ref. 7.

17)
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IV. SAMPLE DETECTOR DESIGN

We have calculated the characteristics of a complete
detector design as an example of the performance which
might be obtained in practice. Rather than trying to achieve
the ultimate in resolution, we have chosen a design which
uses established integrated circuit fabrication and silicon
etching techniques at tolerances well within their routine
capabilities. All materials used have well-known thermal
properties, with measured values near the proposed operat-
ing temperature available from the literature. The detector
construction is shown in Fig. 1, and the heat capacities of
each component are given in Table I.

The thickness of the absorber is chosen to have reasona-
ble stopping efficiency for x rays up to 9 keV, and the
0.5} 0.5 mm size is suitable for use with many focusing in-
struments. With all addenda, the net heat capacity is then
5.8 X 10~ J/K at 0.1 K, resulting in thermodynamic ener-
gy fluctuations of 0.18 eV rms. For an effective y equal to 2.4
and 8 = 3, the results of the previous section give an energy
resolution of 1.1 eV FWHM, where we have assumed a con-
servative value of 4.0for 4 (the logarithmic temperature sen-
sitivity of the thermistor). The time constant r is about 300
us, giving a NEP of the order of 5 107 '8 W/Hz'/2.

V. DETECTOR EFFICIENCY VARIATIONS AND
RESOLVING POWER LIMITS

At least five processes may modulate the responsivity of
the detector. Random variations of these factors can limit
the resolving power {U /A U) of the detector. These factors
are: (1) The x-ray energy may be carried by a photoelectron
which escapes from the detector before depositing its full
energy; {2) excited electrons and excitons may emit photons
which escape from the detector; (3} energy may be held in

TABLE 1. Thermal properties of the design illustrated in Fig. 1.

Component Yolume Heat capacity at 0.1 K
(em?) JK)

Intrinsic silicon 6.7x107° 4.5x1071

Thermistor implant 1.0x107° 8.6x10-18®

Implanted arsenic

contacts 20x10°1° 1L.7x107'"¢

Aluminum

metallization 3.4x107° 24x10-10f

Total heat capacity at 0.1 K: C, = 5.8 x 10~ JK~!

Thermal conductivity of silicon support legs at 0.1 K: G, = 1.8 x 107"
wK-!

Thermal time constant: 7, = CG ~' = 320 us

(ks TEC)2 =2.8X10"°J =0.18 eV

From optimization, as in Fig. 2, £ = 2.56 (for y 4 =24,8=3,A=4)
Energy resolution: 4E,,,, = 0.45 ¢V, or 1.1-eV FWHM

* Debye specific heat with T, = 630 K was used. By analogy, for high-puri-
ty Ge, the 0.1 K specific heat is equal to the Debye value for short time
7~ 100 usec, but is about double this value for long times 7> 10 ms [M.T.
Loponen, R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. B
25, 1161 (1982}

®J. R. Marko and J. P. Harrison, Phys. Rev. B 10, 2448 (1974).

< Specific heat from free-electron Fermi gas model.

4N. E. Phillips, Phys. Rev. 114, 676 (1959).

*N. E. Phillips, Ann. Acad. Sci. Fennicae A VI, 210 (1961).

0.5% of aluminum was assumed to be in normal state due to unavoidable
trapped flux.
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metastable states that are iong lived with respect to the read-
out process; (4) the deposited energy may not be uniformly
converted into a thermal spectrum of phonons before the
phonons leak out through the support legs; (5) the detector
may have a nonuniform response across its face, related to
the proportion of the deposited energy which reaches the
thermometer before going down the support legs.

A. Photoelectron escape

A few photoelectrons produced near the detector sur-
face will escape through that surface without depositing
their full energy. The fraction which escapes is of the order of
1,/1,, where [, is the electron range and /,, is the x-ray mean
free path. This is maximum just above an absorption edge,
and for Si at 1.6 keV is ~6%. In principle this could be
overcome or improved by coating the detector with a low Z
material, having a very low /,//,. However, choices are li-
mited by heat capacities at low temperatures.

B. Radliative losses

The interaction of an x ray with a Si crystal results in
approximately 30% of the energy being converted to free
holes and electrons, with the rest of the energy being con-
verted directly to phonons. Many of the free holes and elec-
trons form excitons, bound hole-electron systems, which de-
cay by emitting phonons, photons, or Auger electrons. Most
excitons decay by channels which give rise to rapid thermali-
zation, but some small fraction may decay radiatively. Si is
quite transparent to those photons and they can escape from
the detector. If on the average N of these photons escape,
their statistics would limit the energy resolution to ~(N)!/2
eV. Fortunately, most excitons decay rapidly by nonradia-
tive processes. Hole-electron recombination on a neutral do-
nor is very fast and in the case of As in Si decays by an Auger
process within 80 ns.®® The radiative lifetime for such a re-
combination is 750 us, so radiative decay is very unlikely.
However, there are some traps for which the Auger process
is forbidden, and thus have a reasonably high radiative effi-
ciency. Some solutions to this potential radiative loss prob-
lem are to (1) produce material without radiatively efficient
traps, (2) put a sufficient number of neutral donors in the
crystal to dominate undesirable traps, or {3) metallize the
external surface of the detector with aluminum to prevent
loss of photons created by radiative decays. Detailed studies
of radiative loss and heat capacity as a function of donor
concentration could be necessary if radiative loss is impor-
tant.

C. Metastable states

Another potential difficulty is that the thermalization
of part of the deposited energy may be delayed beyond the
readout time, resulting in lost energy, with the statistical
fluctuations which this implies. Long hole-electron recom-
bination times or long exciton decay time would result in the
delayed thermalization. However, if a sufficient donor con-
centration can be tolerated, the exciton recombination rate
will be fast.®

If undesirable trapping centers cannot be eliminated or
swamped by short-lived sites, it should still be possible to
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reduce their effects by “flashing” the device to fill the unde-
sirable traps and prevent loss of signal.

D. Nonthermal phonon spectrum

A fourth potential problem is the fact that the spectrum
of phonons in the detector following the incidence of an x ray
may be highly nonthermal. Measurements of bulk CaF, at 4
K following the impact of an energetic electron shows that
after 100 ns the spectrum has relaxed to that of a gray body at
about 30 K. The spectrum changes littie more for times as
long as 2 us.'® Therefore, it is possible that the spectrum in
our detectors might also remain nonthermal for a time scale
on the order of 100 us. If the spectrum has relaxed toas low a
temperature as 30 K, however, it seems that the relative sta-
tistical fluctuations in all subsequent processes would be li-
mited to the square root of the number of phonons existing at
this temperature as a worst case. This would resultin about a
4-eV FWHM uncertainty in the response to a 6-keV x ray.
Given the large surface to volume ratios for these thin detec-
tors, the spectrum may thermalize more rapidly. The impor-
tance of this problem depends on how the thermometers
work: if the resistance change of the thermometer is simply a
function of the elastic strain energy density, then it should
make no difference what spectrum the phonons have. If sin-
gle quantum processes are important (phonon-assisted hop-
ping), the spectrum may be relevant.

E. Thermal uniformity

Since the phonon mean free path in the pure silicon
absorber at 0.1 K is much larger than the dimensions of the
device, the thermal conductivity is limited by the smallest
dimension. The thermal diffusion time 7, across the 0.5-
mm-square absorber is then ~ 2 us if we assume completely
diffuse reflection of phonons at the silicon surfaces. How-
ever, these etched surfaces are very smooth on the scale of a
mean phonon wavelength. Perfect specular reflection of
phonons would shorten the diffusion time to ~0.2 us. To
ensure uniform response across the surface of the detector,
the thermal time constant (7=C /G') must be long in com-
parison with this equilibration time for the absorber which is
on the order of the phonon crossing time. The fractional
variation of response across the face of the detector could be
74/7 if no special techniques are employed. The surfaces of
the support legs could be roughened by an anisotropic etch,
if necessary, to ensure diffuse reflection and decrease their
conductance. The resuiting thermal time constant using the
roughened legs is ~ 300 us. If specular reflection reduces the
absorber relaxation time, the support legs could be short-
ened to increase G somewhat and allow higher counting
rates. It will be difficult to provide sufficiently fast amplifier
input risetimes for detector time constants much shorter
than 100 us, however, since the detector resistance must be
107 £2 or greater to provide an adequate match to the JFET
noise impedance, and stray capacitances amount to several
pF.

We have one concept for measuring the energy deposit-
ed in the detector, with a constant responsivity regardless of
the location of the x ray. The detector in Fig. 1 would be
modified to have four matched thermometers located at the
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corners of the silicon absorber and connected in series. The
four thermometer regions detect the heat as it flows out of
the absorber, and their outputs are added, since they are
connected in series. If all the thermometer regions are identi-
cal and all the support legs are identical, then the area under
the detected pulse shape is strictly proportional to the depos-
ited energy. While pulse shapes may vary slightly as a func-
tion of the x-ray position, the total energy should be correct-
ly determined.

We have proposed several effects which may contribute
to the uncertainty of the energy of an incident photon. These
sources of “thermalization noise” are discussed, and possi-
ble remedies are suggested. Preliminary experimental results
on a detector have not shown any large nonthermal effects of
this type.'' The tests did not have enough sensitivity to be
definitive for a potential 1-eV FWHM detector, however, so
a final answer must await further experiments. Given the
low efficiency of radiative exciton decays, and the evidence
for prompt recombination, we believe these two problems
will not be serious. The effects of a possible nonthermal
phonon spectrum are not known, but experimental results
are in good quantitative agreement with the response expect-
ed for a fully thermalized phonon spectrum.'!

Vi. SUMMARY

We propose a thermal detector as an efficient high reso-
lution x-ray spectrometer. A theory for the resolution of the
detector as a function of its physical parameters has been
presented. For a given detector design and cryostat tempera-
ture, the detector temperature, controlled by its bias power,
is the only free parameter. We derive the maximum resolu-
tion of a given detector for the optimal value of this param-
eter. The model assumes that the Johnson noise dominates
all other noise sources in the thermistor, which has been
shown to be the case in other work. This and thermodynamic
fluctuations in the detector temperature represent the major
noise sources in detectors of this kind. We show that amplifi-
er noise is not a serious problem.

A design is given for a detector capable of operating
with good efficiency up to energies of 9 keV. Assuming
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noiseless thermalization of the x-ray energy, a resotution of
1.1-eV FWHM is achievable with this device at a heat sink
temperature of 0.1 X.

We discuss the possibility of excess noise caused by sta-
tistical fluctuations in any energy which is lost or whose
thermalization is delayed. Several mechanisms are suggested
which may give rise to energy loss, and possible solutions are
presented. Further work is required to understand the mag-
nitude of these possible effects and the effectiveness of our
proposed solutions.

We believe these detectors show great promise as high
resolution x-ray spectrometers and as sensitive microcalori-
meters for other measurements. Further laboratory work is
necessary to define the limits to their utility.
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