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We have investigated the response of an argon-methane proportional counter to monochromatic X-rays in the range 99-277 eV.
The apparent nonlinearities in mean pulse height as a function of photon energy and the detailed shape of the puise height
distribution for each energy can be predicted quite precisely using the extensive atomic data available for argon. Based on this
understanding, we propose a semiempirical system for using a limited amount of calibration data to predict the full response of

counters employing less well characterized gasses.

Such accurate models of proportional counter response are required to maximize the spectral information that can be derived

from observed pulse height distributions.

1. Introduction

Gas filled proportional counters have a long history
as detectors for low energy X-rays. Although solid state
detectors and microchannel arrays have supplanted them
for certain applications, they retain distinct advantages
for many others. Among these are:

(a) High efficiency: Peak quantum efficiencies can
be above 90%.

(b) Wide bandwidth: It is possible to design a single
detector with quantum efficiency above 30% over two
decades in photon energy.

(c) Large area: Proportional counters can be scaled
to almost arbitrarily large sizes with low weight and cost
relative to other detectors.

(d) Low background: Background rates less than
2% 107* counts em ™2 57! keV ™! down to 70 eV have
been observed for counters exposed to the cosmic ray
flux above the atmosphere. Much lower rates are possi-
ble at energies where a front-side anticoincidence layer
can be used.

(e) Position resolution: Counters can be constructed
to provide one or two dimensional imaging capability
with better than 300 pm resolution.

(f) Energy resolution: Proportional counters are the
only detectors now in use with any energy resolution at
all for photon energies below the amplifier noise limit
of small Si(Li) detectors — currently ~ 200 eV. Even the
very low resolving power available in this region
(E/AFE ~ 1) can be invaluable for discriminating against
non-X-ray background and other interference, such as
overlapping orders in a grating spectrometer,
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All of the above characteristics are vital for some
aspects of X-ray astronomy; in various combinations,
they make proportional counters highly attractive for
many other applications.

The limited energy resolution of proportional coun-
ters requires an indirect method for analysis of almost
any spectrum more complicated than a single line. The
usual procedure is to assume a trial input spectrum,
calculate the expected response of the detector to this
spectrum using a model of the counter response, com-
pare this predicted pulse height spectrum with the ob-
served data, and modify the trial spectrum. This process
is iterated until a good match is obtained. A consider-
able amount of spectral information can be derived in
this way if the pulse height data have good statistical
precision, but an accurate model of the proportional
counter response 1s required.

The usual method for determining the response model
is to measure the pulse height distributions obtained
from a small number of X-ray fluorescent lines of
known energy, and to fit them to a predetermined
function with adjustable mean and shape parameters.
The adjustable parameters are then interpolated to find
the appropriate values for all other photon energies.
Functions typically used are Poisson distributions,
Prescott functions [1], and, at energies above a few keV,
Gaussians. Since there is some evidence that for low
photon energies neither the mean pulse height nor the
shape of the distribution is adequately predicted by
such procedures, we have used a synchrotron radiation
source with a high-resolution monochromator to mea-
sure the detailed response of an argon—methane filled
proportional counter to X-rays with energies between
99 and 277 eV.

Fig. 1 is a plot of the means from Poisson fits to the
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Fig. 1. The mean charge (crosses) and the width parameter (dots) d
spectra generated by monoenergetic X-rays. The uncertainties in the

etermined by fitting Poisson distributions to the pulse height
mean charge are comparable to the size of the symbols. The

width parameter is in units of eV per charge unit. Both parameters are discontinuous at the argon L-edge.

pulse height spectra. A zero offset and a ~ 12% discon-
tinuity at the argon L-edge (246 eV) are evident. The
width parameter, in terms of an apparent eV per charge
unit, is shown at the top of the figure and also has a
large discontinuity at the argon L-edge. As an example
of the quality of the individual fits, fig. 2 shows the

difference between the observed pulse height distribu-
tion due to 177 eV photons and the best fit Poisson, as
well as results for two other models. It can be seen that
the Poisson distribution is a poor representation. The
Prescott function is better, but still has significant sys-
tematic errors in shape. The third model represents our
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Fig. 2. Residuals for three models of the pulse height distribution produced by 177 eV photons, plotted as data minus model in units
of one standard deviation of the data (1.7% at the peak). The position of the peak and the full width at half maximum are indicated
at the top of the figure. See section 4 for discussion of the requirement for a free parameter in the physical model.
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attempt to improve on this situation by using a less
empirical approach. The atomic properties of argon
have been particularly well studied, and we have made
use of this information to try to calculate the counter
response from first principles. We find that we can
predict the observed behavior rather accurately: the
residuals for the 177 eV pulse height distribution shown
in fig. 2 are typical, and the nonlinearities of the mean
pulse height with respect to photon energy shown in fig.
1 are also explained.

Unfortunately, physical data similar to those availa-
ble for argon do not exist for most other gasses. If we
assume, however, that the relative importance of the
various effects is not too different, we can use our
understanding of argon to interpolate the response of
counters filled with other gasses between a small num-
ber of appropriately chosen calibration lines. A general
procedure for doing this is outlined in section 5.

2. Proportional counter operation

Three distinct processes are involved in the conver-
sion of an X-ray photon to the charge output signal of a
proportional counter:

(1) photoionization, in which the incident photon en-
ergy is converted into electron kinetic energy and
residual ionization potential,

(2) secondary ionization, in which the free electrons
lose kinetic energy through ionizing and non-ioniz-
ing collisions with other gas atoms, and

(3) the electron avalanches, which amplify the signal so
that readout noise does not dominate.

2.1. Photoionization

To be recorded by a proportional counter, an X-ray
must produce ionization in the active volume of the
counter. The only significant interaction for soft X-rays
is photoelectric absorption. In the simplest case an
outer shell electron 1s removed, producing a singly
ionized atom and a single energetic electron. Inner shell
ionization dominates when energetically allowed, how-
ever, and usually leaves the absorbing atom in a multi-
ply ionized state due to emission of one or more Auger
electrons. In all cases the photon energy is split between
the potential energy of the final ion state and the kinetic
energy of one or more electrons. Because the ion drifts
to the cathode without producing any additional free
electrons, its potential energy is effectively lost from the
counter. (Ionizing charge exchange collisions are en-
ergetically allowed for Ar3* and above, but this does
not seem to be a significant effect.)

The deeper the shell from which the initial photo-
ionization occurs, the higher the average ionization state
the atom is left in. This means that as the photon energy

is increased across an absorption edge and it becomes
energetically possible to remove a more tightly bound
electron, there will be a sudden decrease in the kinetic
energy available to the electrons. This energy loss is
partially offset by the extra electrons produced since
each free electron, even with zero kinetic energy, repre-
sents an amount of energy equal to the average kinetic
energy required per secondary ionization in the gas (the
“W-value”: see section 2.2 below). Additional energy
loss occurs due to the “shake-up” and *shake-off”
effects where outer shell electrons are left in excited
states or are removed from the atom due to perturba-
tions caused by the energetic photoelectron or Auger
electrons.

For argon, good data exist for the probabilities and
cross sections for almost all of these processes. We have
used these to calculate the distribution of numbers of
electrons produced in a photoionization event and their
kinetic energies. Details of the calculation are published
elsewhere [2]. We find that the net increase in energy
loss from the electron system on crossing the argon
L-edge accounts for about half of the discontinuity in
mean pulse height at that point shown in fig. 1. (The
other half is caused by losses of part of the secondary
electron cloud through diffusion to the window. This
loss mechanism is more important on the high-energy
side of the edge because of the much smaller photon
absorption depth, as discussed in section 2.2. An experi-
ment performed to verify this division of the cause of
the discontinuity is described in section 4. The sudden
increase in the width of the pulse height distribution at
the L-edge is primarily due to the effects of diffusion to
the window.)

Branching ratios for the more important processes
vary only slightly with photon energy between absorp-
tion edges. This means that the amount of energy lost to
potential energy of the ion is nearly constant between
absorption edges, but that there can be a relatively large
change in this loss as the photon energy is increased
across an absorption edge. This observation is the key
to an empirical procedure employing a minimum num-
ber of calibration lines to model the response of propor-
tional counters using different gasses: photoionization
is the most complex contributor to counter behaviour,
but it is usually sufficient to evaluate its effects at one
photon energy in each interval between absorption
edges.

2.2. Secondary ionization

The ionization yield, W(E), is defined as the initial
electron kinetic energy divided by the average number
of ionizations, and is in general a function of the initial
energy of the electron. For most gasses W(E) ap-
proaches a constant value of about 30 eV per 1on pair as
the initial electron energy exceeds a few hundred eV.
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Particularly precise measurements of this function have
been made for a number of gasses by Combecher [3].
These data show that W(E) has high values just above
the ionization potential and decreases rather smoothly,
approaching a limiting value at energies above several
hundred eV. It turns out that this variation can be fit
almost perfectly with a simple offset, as shown in fig. 3
where Combecher’s data have been plotted as the mean
number of electrons produced vs the initial energy. The
initial electron has been included in the total since it is
indistinguishable from the others once thermalization is
complete. The solid line on the figure is an extrapola-
tion to low energies of a least-squares fit to the data
between 200 and 500 eV for the function

Ny=(E-U)/W+1 for E>158¢V,
=1 for E<158¢V. 1)

The fit values are 10.6 eV for the offset U, and 28.5 eV
for the reciprocal slope W. The latter is, of course, equal
to the high energy limiting value of W(E). (W(E)
decreases slightly at much higher energies, but this is
not of interest here.)

The accuracy of the linear approximation is re-
markable, considering the complexity of the physics
involved in W(E). Conservation of energy requires N,
=1 for E less than the ionization potential of argon,
and for E only 2 eV above this level, the average yield is
already within 2% of the straight line approximation.
Fits to Combecher’s data for other gasses give similar
results. Methane in particular has parameters quite close
to argon, with W= 28.6 eV, U= 11.0 eV, and an ioniza-

tion potential of 12.6 eV. The shape of N, vs E
observed for these gasses is in good qualitative agree-
ment with theoretical estimates [4].

Since W(E) is greater than the ionization potential,
the initial electron kinetic energy must be distributed
between ionizing and non-ionizing processes, and statis-
tical fluctuations in the branching ratio produce a distri-
bution in the actual number of ionizations produced by
electrons with a given kinetic energy. The second mo-
ment of this distribution is described by the Fano
factor, f, where o2 =f(N). Here, o is the variance,
and (N) is the average number of secondary ioniza-
tions, N,, — 1. The Fano factor has been calculated for
some gasses. In argon, for instance, Alkhazov [5] pre-
dicts 0.16 using analytical approximations, and Un-
nikrishnan and Prasad [6] calculate 0.15 for E > 300 eV
using a Monte Carlo technique. These can be compared
with the value of 0.18 measured at 5.3 MeV [7].

The full shape of the distribution is obtained from
the Monte Carlo calculations. We find that Unnikrish-
nan and Prasad’s data can be approximated to a few
percent precision by a Gaussian truncated at zero and
evaluated for integer numbers of electrons [8].

Some of the secondary electrons may not reach the
avalanche region. An important loss mechanism at some
X-ray energies is the loss of secondary electrons by
diffusion back to the counter window. This depends on
a competition between diffusion rate and drift velocity,
and should be significant when the length scale defined
by the ratio of diffusion coefficient to electron drift
velocity, (D/w), is comparable to the mean photon
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Fig. 3. Total secondary ionization produced by an energetic electron in argon as a function of electron energy. The number includes
the original electron. Crosses are experimental data [3]; the line is fit to data for 200 < E_, < 500 eV.
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absorption depth A. A simple model for this process has
been developed by Inoue et al. [9]. They find that
diffusion losses are important for D /w > 0.1A, a condi-
tion satisfied for some distance above the argon L-edge
in most argon—methane counters. (The possibility of an
energetic photoelectron reaching the window before
being completely thermalized seems unlikely under any
conditions of interest due to the large ratio of photon to
electron range at any given energy.) In counters with
plane-parallel geometry, the effective transmission of
the grid separating the drift and avalanche regions must
be taken into account as an additional loss mechanism.

2.3. Electron avalanche

In conventional proportional counters the secondary
electrons drift into a region where the electric field is
high enough that electrons can gain sufficient energy
between collisions to ionize additional gas atoms, for-
ming multiplicative cascades or avalanches. Each sec-
ondary electron produces its own avalanche, and the
mean number of electrons in one of these is referred to
as the “gas gain”. This gain is required in order that
amplifier noise not dominate the counter resolution.

If the individual ionizing collisions in an avalanche
were uncorrelated, we would expect the distribution of
total charge collected in single electron avalanches to be
an exponential, which has a variance equal to the square
of the mean. However, a significant fraction of the
energy gained from the field goes into the ionizations,
so the individual multiplications are not quite indepen-
dent events. This anticorrelation reduces the variance.
The theoretical work of Alkhazov [10] predicts that the
shape of the charge distribution in single-electron
avalanches (the single electron spectrum, or SES) should
be approximated by a Polya distribution:

_n p("_hq)(ﬂ)(h_l). (2)

P(g, p, h)=— ex;
(q.p, k) o T(R) v\

Here g is the actual number of electrons produced in an
avalanche, p its mean value (the ‘“‘gas gain”), 4 is a
width parameter which we call the Polya parameter, and
I' is the Gamma function. This distribution reduces to
an exponential for 4 =1 and approaches a delta func-
tion as h becomes large. Measurements of the SES in
proportional counters with a cylindrical field geometry
generally are in good agreement with this form [11,12].
The values of h are typically between 1.3 and 1.5 and
the relative variance, which is just 471, is between 0.6
and 0.8.

In the normal operation of proportional counters as
X-ray detectors the SES is not directly observed, since
each X-ray photon produces several electrons which
initiate avalanches. The detector output is the sum of
the charge produced by these avalanches. The Polya

function has the convenient mathematical property that
the distribution of sums of N samples from a Polya
distribution with mean p and Polya parameter 4 is
another Polya distribution with mean Np and Polya
parameter Nh. This gives the relative variance in the
distribution of total charge produced by exactly N
secondary electrons as (Nh) ™.

We can compare this relative variance in the total
avalanche charge to the relative variance in the number
of secondary electrons produced by monoenergetic elec-
trons in a gas, which was defined in section 2.2 to be
f{N»~!, where (N is the mean number of secondaries
produced and f is the Fano factor for the gas. Since f
is typically ~0.2 and A~ ' is ~0.7, it is clear that
avalanche fluctuations strongly dominate secondary
ionization statistics in determining proportional counter
resolution.

The assumption of a Polya distribution for the SES
may be less accurate for counters with plane parallel
rather than cylindrical field geometries [10]). The ap-
parent SES can also be distorted by successor
avalanches, which are initiated by photoelectrons
liberated from the detector cathode by ultraviolet pho-
tons produced in the original avalanche. These can
greatly increase the variance of the SES, but are usually
a problem only when using a cathode material with a
high photoelectric efficiency or a counter gas which is
particularly transparent to ultraviolet photons. The suc-
cessor avalanches primarily affect the high-charge tail of
the SES where the resulting distortions can be observed
directly; they can also be resolved in time with suffi-
ciently fast electronics [13].

Recently, at least three new varieties of proportional
counters have been developed to take advantage of the
large improvement in resolution which can be obtained
by reducing the effect of avalanche fluctuations. The
first of these, the gas scintillation proportional counter,
eliminates the avalanche entirely, using instead a
lower-field region to produce a large number of ultra-
violet photons from each secondary electron in a non-
multiplicative process [14]. The total light output then
provides an estimate of the number of secondary elec-
trons. The second variety of counter retains the
avalanche region, but uses fast electronics to resolve in
time the individual avalanches produced by each sec-
ondary electron. The sizes of the avalanches are ignored,
and only the number is recorded [15]. The third still
uses total avalanche charge as the signal, but employs a
Penning gas mixture and an optimized field in the
avalanche region to greatly increase the ionization ef-
ficiency. The increased efficiency reduces the variance
by increasing the anticorrelation between ionizing events
[10,16,17]. While some avalanche fluctuation effects still
exist, Penning mixtures generally have exceptionally
small Fano factors, and the net resolution ts in principle
at least as good as for the other two counters. In
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practice, all three of these schemes have demonstrated
about a factor of two improvement in resolution over
conventional proportional counters. The effects of pho-
toionization and secondary ionization statistics on de-
tector response still apply to these counters. More accu-
racy may be required in calculating the photoionization
effects since avalanche fluctuations will no longer
dominate the shape of the final pulse height distribu-
tion.

A few other well-known effects exist which are hardly
fundamental but which must be taken into account for
many detectors. These are positional nonuniformities,
gain saturation nonlinearity, and rate-gain effects. The
first is usually due to changes in the field geometry of
the avalanche region from one point on the counter to
another. It can be evaluated empirically with an ade-
quate amount of counter mapping data. The last two
are caused by a breakdown of the assumption of in-
dependence of the single electron avalanches due to
field reductions in the avalanche region produced by
ions left by other avalanches. In the case of gain satura-
tion nonlinearity, the other avalanches are part of the
same X-ray event, and the effect becomes more pro-
nounced as the X-ray energy increases since a higher
density of avalanches is produced. For rate-gain effects,
the interfering ions are left from previous X-ray events,
and the effect is more serious at high counting rates.
These effects are smoothly varying functions of X-ray
energy and counting rate, respectively, and are easily
calibrated with a few data points as long as the gain
reductions are small. If large effects occur at photon
energies or counting rates of interest, it is best to reduce
the gas gain to make the detector better behaved.

3. Outline of the model calculations

For argon, the basic data governing all the processes
described in section 2 can be found in the literature. In
addition, detailed calculations using these data are
available for the distribution of secondary electrons
produced by thermalization of an energetic electron,
and for the distribution of final sizes of avalanches
induced by a single electron in a given field geometry
and gas density. We have collected all of this informa-
tion into a model of the overall response of a cylindrical
argon—methane counter to monoenergetic photons. The
details of this procedure and the sources of the data
used are given in Jahoda and McCammon [2]; we
summarize the method and present the results here.

The photoionization process can take any of a num-
ber of different branches, starting with the atomic shell
initially photoionized, the number of Auger electrons
ejected, and the possible bound or free states to which
other electrons can be promoted by “shake-up” or
“shake-off”. For each allowed combination, we calcu-

late the net probability and produce a list of free
electrons released in the gas with their individual kinetic
energies.

Electrons with energies less than the ionization
potential of the gas can produce no further ionization
and are retained as single electrons. Each of the more
energetic electrons will produce a distribution of ad-
ditional electrons by collisional ionization. The means
and shapes of these distributions are calculated for the
initial kinetic energy, and the individual distributions
are convolved and the single electrons added in to give
a net distribution of thermal electrons for this particular
branch. This procedure is repeated for each allowed
branch, and the branch distributions are weighted by
their respective branch probabilities and summed to
give an overall distribution of numbers of secondary
electrons produced by a particular photon energy. The
distribution of losses through diffusion back to the
counter window is then calculated and convolved with
this to derive the distribution Q(i) for the probability Q
that exactly i electrons will reach the avalanche region.

Following results from the literature, the distribution
of collected charge g from an avalanche initiated by a
single electron is assumed to be given by the Polya
function P(gq, i, k) (eq. (2)). Here p is the mean effec-
tive charge produced, which is just the apparent gas
gain, and 4 is a width parameter whose value depends
only on the electric field and gas density in the avalanche
region. (The apparent gas gain differs from the true gas
gain because charge amplifiers do not usually integrate
for the full length of time required for the positive ions
to reach the cathode.) Due to the properties of the
Polya function, the distribution of total charge ¢ col-
lected from exactly i avalanches is P(gq, ip, ih). The
net pulse height distribution produced by monoen-
ergetic photons is then given by the weighted sum:

R(q) =2 (Q()P(q. ip, ih)). (3)

Fig. 4 shows the relative effects of these different
processes for 277 eV photons. To display the magnitude
of the effects of branching in the photoionization stage,
the mean number of electrons produced by each en-
ergetic electron in a given branch was calculated. These
were summed together with individual electrons to give
the mean total number of electrons produced by that
branch. The solid triangles are the branch probabilities
plotted at their respective mean numbers, and, aside
from the fractional electrons, this represents the distri-
bution of secondary electrons that would be expected
from photoionization branching in the absence of statis-
tical fluctuations in the secondary ionization process
(Fano factor = 0). The open histogram shows the actual
distribution of secondary electrons produced, and has
the same mean as the triangles. The solid histogram is
the distribution Q(i) after diffusion losses to the window
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Fig. 4. Contributions of various processes to broadening of the proportional counter pulse height spectrum. The triangles show the

distribution of mean numbers of secondary electrons that would be produced following absorption of a 277 €V photon if there were

no statistical fluctuations associated with the secondary ionization. Each triangle represents a different branch of the photoionization

process. The open histogram shows this distribution when the effects of secondary ionization statistics are included. The shaded

histogram is the same distribution after diffusion losses to the window. The solid line shows the detector output after avalanche
statistics are included.

are included. The solid line is the distribution of total
avalanche charge R(gq), plotted in units of the apparent
gas gain p so that it has the same mean as the solid
histogram. The secondary electron distribution is largely
obscured by statistical fluctuations in the avalanche
process and the experimental comparisons with our
data (section 4) are not very sensitive to this part of the
model. We can, however, compare our predictions of
the secondary electron distribution to the data of
Siegmund et al. [15], who used high-speed electronics to
count flashes of light from the individual avalanches
induced by each secondary electron. They determined
the number of avalanches associated with each X-ray
absorbed in their counter and thus measured directly
the distribution of numbers of secondary electrons. The
distribution presented by Siegmund et al. for 277 eV
carbon K, photons in an argon filled counter is con-
tinuous, rather than a histogram, due to the 0.7 electron
(lo) noise introduced by the count summing circuit.
The dots in fig. 5 show their measured avalanche count
distribution for C K, photons while the histogram is
our calculated secondary electron distribution for 277
eV photons. The solid line shows the histogram after
convolution with a Gaussian (lo = 0.7 electrons) to
facilitate comparison. (Siegmund et al. used a somewhat
different gas mixture and drift field than those in our
calculations so the diffusion losses to the window may
be somewhat different [2].) The sharp rise at small

electron numbers in the Siegmund et al. data is prob-
ably due to noise in the count summing circuit. The
overall agreement between the distributions is quite

Frequency of Occurrence

9
Number of Secondary Electrons

| 3 5 7 H 13

Fig. 5. A comparison of the secondary electron distribution for

monochromatic 277 eV X-rays calculated from the detailed

model (histogram) with the direct measurement of Siegmund et

al. [15] (points). The solid line shows the model distribution

convolved with a Gaussian of width equal to the electronic
noise in the summing circuit used to take the data.
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reasonable, and adds credibility to the calculations in
our model up to this point.

It can be seen from fig. 4 that photoionization
branching contributes little to the width of the final
pulse height distribution. There is almost no change in
the branching pattern in the energy interval between
atomic absorption edges, and the mean number of
secondaries varies quite linearly with photon energy
except for a small energy range immediately above an
edge. These observations are significant for empirical
models fit to limited amounts of calibration data: since
the photoionization effects are the most complex part of
the proportional counter behavior, it is fortunate that
their effect on the shape of the response does not have
to be taken into account in any detail. There can be a
large shift in the average number of secondaries across
an absorption edge, primarily due to a shift in the mean
final ionization state of the absorbing atom, but this can
be evaluated by having at least one calibration line
located somewhat within each energy interval between
successive absorption edges.

4. Comparison of model with experiment

We have used a synchrotron light source and a
double grating monochromator with particularly low
scattered light levels to generate the pulse height spectra
of monochromatic photons at twelve energies from 99
to 277 eV. Our gas proportional counter was filled with
P-10 (90% argon, 10% methane) at a pressure of 780
Torr. The apparent gas gain was about 1.6 X 104 as
determined by measurements with an >°Fe source and a
charge pulser in the usual manner. The true gain (from
total current measurements) was about twice this value.
Slow gain variations over the course of the experiment
were monitored by measuring the peak position of the
>Fe pulse height spectrum. The gain variations were
less than 3% and have been corrected with an accuracy
of about 1%.

The data are displayed in fig. 6. The photon energy
which generated each pulse height distribution is indi-
cated in the figure. The measured pulse height spectra
with E <142 eV were contaminated by a significant
amount of second order flux from the monochromator.
For these three pulse height spectra we used the model
to calculate the shape and position of the second order
line, and fit its amplitude as an additional free parame-
ter. This second order contribution, which accounted
for about 25% of the observed X-rays in the 99 eV pulse
height distribution, has been removed from the data
displayed in the figure.

The results of the models discussed above and de-
scribed in detail in Jahoda and McCammon [2] are
shown as solid lines in fig. 6. A measured background
spectrum has been added to the models. The fits to the

Counts

124 ev

177 eV
155 eV
: 138 eV

99 eV

O 100 200 300 400 500
Pulse Height (eV)

Fig. 6. Pulse height spectra produced by monoenergetic pho-

tons in an argon—methane proportional counter. The photon

energies are indicated on the figure, as is the location of the

argon L-edge. Models of the counter response are shown as

solid lines. Counter gas gain is the only free parameter in these
models.

pulse height spectra produced by photons at 243 and
253 eV (just below and above the argon L-edge) are
poor. This could be due to wings on the monochroma-
tor line profile which extend across the edge or to fine
structure near the atomic absorption edge which is
unaccounted for in the model. Because of the ~ 1%
uncertainty in the experimental gain normalization and
the high statistical precision of the data, it was neces-
sary to allow the gas gain to vary as a free parameter.
All other aspects of the model, i.e. the details of the
photoionization process, the secondary electron yield
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and the distribution of the secondary electrons, diffu-
sion losses to the window, and the shape of the avalanche
distribution, are fixed by data obtained from the liter-
ature. Values of the reduced chi-square, x2, for each
pulse height spectrum are listed in column 2 of table 1.

As a sensitive test of the effectiveness of this model
in explaining the discontinuities in the mean and width
of the observed pulse height distributions across the
argon L-edge shown in fig. 1, we ran another series of

fits where both the gain and the basic width parameter
(the single electron Polya parameter, 4) were allowed to
vary freely. In figs. 7a and 7b we plot the gas gain and
width parameter derived from these fits. The fit values
for gas gain are almost identical to the values obtained
with /4 fixed at 1.41. The x?2 values for these fits are
listed in column 3 of table 1. The gas gain shows no
consistent trend with photon energy, and in particular
there is no significant shift across the argon L-edge. The
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Fig. 7. Best fit values of the gas gain g (a) and the single electron spectrum width parameter # (b) for models which treated both as

free parameters. The horizontal lines in (a) show the mean gain to which the spectra were reduced using a *>Fe calibration source and

the +1% estimated uncertainty in this procedure. The vertical bar in (b) indicates the uncertainty in the value of k derived from the
literature [18]. The solid line is the average of the fitted values.
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Table 1
Summary of model fitting results
E, Reduced chi-square, x2
[eV] Physical models Semiempirical
h fixed  h, p free h=1.40, h=144,
at1.41  parameters f'=0.175 [ =020
277.3 1.01 1.01 1.02® 1.07 ®
263.8 0.87 0.87 1.22 1.26
253.0 1.28 1.15 2.05 225
2431 2.78 2.09 2.60 2.70
233.9 1.11 1.11 1.19 1.13
225.4 0.88 0.88 0.93 0.89
206.6 1.04 1.03 1.09 1.06
177.1 0.94 0.94 0.94® 0.94®
155.0 1.12 1.12 1.13 1.16
13779 1.02 1.01 1.02 1.02
12409 094 0.95 1.01 1.07
9929 111 1.10 1.17 1.17

2 All fits had about 120 degrees of freedom.

Y Used to determine parameters of semiempirical models.

9 Intensity of second order line fit as additional free parame-
ter.

fit values for A also show no significant shift across the
argon L-edge. The fit values for A, excluding those
determined from the pulse height distributions just be-
low and just above the argon L-edge, are consistent with
a constant value of 1.42, which is itself within the
uncertainties in the value of 1.41 + 0.02 which we had
obtained from the literature [18]. The x2 values are
virtually identical for fits which fix & at 1.41 and fits
which allow h to vary freely. The formal uncertainties in
our best fit gas gain values are ~ +0.3% while the 1o
variation within the set of fit gas gains is +0.9% (ex-
cluding results for the two pulse height spectra that
bracket the argon L-edge). This variation in the fit gas
gains is consistent with the estimated accuracy of our
gain normalization procedure, but we cannot rule out
systematic errors of this magnitude in our model of the
mean charge production.

The model predicts a 36.1 eV discontinuity in mean
pulse height at the argon L-edge, which is in satisfactory
agreement with our observations. According to the
calculations, 14.6 eV of this is due to photoionization
effects and the balance is produced by the sudden
increase in secondary electron losses to the window due
to the decreased absorption depth on the high energy
side of the edge. Others have proposed that this drop in
pulse height is due to incomplete secondary electron
collection caused by a weak field region in close prox-
imity to the presumably rough window surface. It
seemed to us that a good test of the reality of our model
would be to determine experimentally the division of
the effect among these three possibilities.

The possibility of a weak field region near the window
is easily tested by reducing the operating pressure, since
both photoionization effects and the ratio of photon
mean free path to the back-diffusion scale length are
approximately independent of density. Reducing the
pressure by 60% had no effect on the discontinuity, so
field geometry near the window does not seem to con-
tribute significantly.

Photoionization and electron diffusion effects were
separated by replacing increasing portions of the argon
in the gas mixture with helium. This left the diffusion
scale length nearly the same while the small photoelec-
tric cross section of helium increased the photon mean
free path. Since essentially all of the X-rays were still
absorbed by argon atoms, photoionization processes
were unaffected. The result was that 12.4 + 4 eV of the
discontinuity persists when extrapolated to infinite ab-
sorption depth and is therefore attributable to changes
in the photoionization processes in going across the
edge. This is in reasonable agreement with the 14.6 eV
predicted by the model.

5. Empirical models for other gasses

For most proportional counter gasses it would be
impractical, if not impossible, to develop a model as
detailed as our model for argon [2]. The necessary
atomic data are not available. Examination of the de-
tailed model, however, makes it possible to describe a
simple semiempirical procedure which is a good ap-
proximation to the detailed model for argon over a wide
range of energies. It will also be a good approximation
for other gasses if the relative magnitudes of the major
effects are similar to those for argon. The predicted
response is described by a small number of free parame-
ters. Some of these parameters change value at atomic
absorption edges, but all required values can be inferred
from a few properly chosen calibration lines.

The detailed model already makes use of analytic
expressions that approximate the charge distributions
resulting from secondary ionization, diffusion losses,
and the electron avalanche. We discuss below a simple
expression which approximates the net results of photo-
ionization plus secondary ionization. In combination
with the analytic descriptions of diffusion loss and the
avalanche, this expression can be used to approximate
the entire proportional counter response over a wide
range of energies.

We discuss this approximation to the results of pho-
toionization and secondary ionization in section 5.1. In’
section 5.2 we describe the algorithm for predicting
proportional counter response, given values for the
parameters, and in section 5.3 we describe a method to
determine all of the necessary parameters from calibra-
tion data.
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5.1. Approximations to the secondary electron distribution

An intermediate result from the detailed model for
argon predicts the probability distribution of the total
number of electrons produced following absorption of
monoenergetic photons [2]. This is the secondary elec-
tron distribution after thermalization of all energetic
electrons produced in the photoelectric absorption event,
but prior to accounting for diffusion losses to the
window. We find that this distribution can always be
approximated rather well by a single Gaussian, despite
the fact that it is the sum of single electrons plus
Gaussians (which are themselves approximations to the
ionization distribution produced by individual energetic
electrons), averaged over all photoionization branches.
Even for photon energies above the argon L-edge, where
M- and L-shell photoionizations are both significant
and contribute different mean numbers of electrons to
the total secondary electron distribution, the gaussian
never differs from the detailed model by more than
1.5% of the peak value. It thus makes sense to ap-
proximate the net results of photo- and secondary ioni-
zation with Gaussians, bypassing all the complexities of
the photoionization process. It is of course necessary to
be able to predict reliably the mean and width of these
as functions of photon energy.

Although photoionization is the most complicated
part of the detailed model, the net effect is primarily
just a discontinuity in the mean number of total sec-
ondary electrons produced as the photon energy crosses
an absorption edge. The detailed model approximates
the probability of shake-up and shake-off processes
(when energetically allowed) as constant between adjac-
ent absorption edges. While this is certainly not exact, it
appears to be an adequate approximation for argon,
based on the good agreement with our P-10 counter
data. This assumption of constant probabilities causes
the prediction of the mean number of secondary elec-
trons to increase linearly with photon energy, except in
the small region just above each absorption edge where
the initial photoelectron has so little kinetic energy that

it is below the threshold for shake-up, shake-off, or
secondary ionization. This is the only nonlinearity which
has been taken into account in the detailed model.
Ignoring this, we can approximate the mean number
of secondary electrons by
E,—AE,
(N(E,))y=———. 4)

where the energy offset A E, is different for each energy
interval k& between adjacent atomic absorption edges
and W, the average amount of energy required for each
additional ionization, is just the asymptotic value of
W( E) described in section 2.2.

This approximation introduces a substantial error
just above an edge, but the effect is limited to a small
energy interval where even the detailed model is prob-
ably inaccurate, as none of the effects of fine structure
in the absorption cross sections near the edge have been
taken into account.

We examined the energy dependence of the width of
the secondary electron distribution in terms of an effec-
tive Fano factor,

o B
((N(E ) =1)

Fig. 8 shows f’ as a function of photon energy E,,
where ( N(E,)) and oz(EY) are derived from secondary
electron distributions predicted by the detailed model.
We would recover the Fano factor, f, exactly if the
initial energy were the kinetic energy of a single elec-
tron. We include model calculations for photon energies
beyond the range of our data to show the model behav-
ior as the energy of photoelectrons from the L-shell
becomes large. For photon energies above a few hundred
eV, the effective Fano factor is nearly equal to the Fano
factor for a single electron with the same energy. Most
of the slope of f vs E, in fig. 8 is due to the
energy-dependent Fano factor used in the detailed mod-
els [2]. The small jump in f’ at the argon L-edge is due
to the increased number of branching possibilities for
photon energies above the edge.

(5)
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Fig. 8. The dispersion of the net secondary electron distribution calculated from the detailed model prior to including electron loss to
the window, as a function of E. . The calculated dispersion has been divided by the mean number of electrons minus one to give an
“effective Fano factor” f'(E,) = a*(E,)/({ N(E,))—1).
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Approximating f as a constant will introduce only
small errors in the predicted width of the total response
of conventional proportional counters, since the width
of the response is dominated by avalanche statistics.
For gas scintillation counters, or other variants which
eliminate or reduce the effects of the avalanche, fig. 8
indicates that the error in the width of the response
(which is dominated by f’ in the absence of avalanche
statistics) would be as large as 25% if f* were treated as
a constant. In such cases it appears more than adequate
(for argon, at least) to approximate f’ by a linear
function with different slope and intercept values in
each interval between absorption edges.

Given this Gaussian approximation to the secondary
electron distribution, we can proceed using the same
analytic expressions as the detailed model to describe
diffusion losses and the electron avalanche. The only
difference is that the ratio of diffusion coefficient to
drift velocity, D/w, the Polya parameter, h, and the gas
gain, p, are treated as free parameters and are de-
termined by fits to calibration data.

5.2. The semiempirical pulse height distribution

Within the limits of the approximations discussed
above, we can estimate the response of a proportional
counter to monochromatic X-rays of energy E, given
the W value, the energy offsets A E,, the effective Fano
factor f’, the ratio of diffusion coefficient to drift
velocity D/w, the mean absorption depth A, the gas
gain p, and the avalanche width parameter A. In this
section we show how to calculate the proportional coun-
ter response given values for all parameters. Section 5.3
will describe how empirical values for these parameters
can be derived from a limited number of calibration
lines.

The average number of secondary electrons (N(E,))
is given by eq. (4) where AE, is chosen for the interval
between adjacent absorption edges which includes E,.
The relative probability Q”'(i) of producing exactly i
secondary electrons is estimated from the Gaussian
distribution function

—(i—(N(E,))
2f"((N(E,)y 1)

where we have taken the width from eq. (5), and the
normalized probability Q’(i) is given by

Q7 (i) =exp (6)

e 2O g
0'() WROY >0,
=0; i<0. @)

This is slightly different from a true Gaussian as it is
only evaluated for integer numbers of electrons and is
truncated for values less than or equal to zero.

Diffusion losses to the window are calculated exactly
as in the detailed model. The distribution of number of
electrons lost to diffusion in the model of Inoue et al.
[9] depends only on the dimensionless parameter k=
D/wA where D is the diffusion coefficient, w the drift
velocity, and A the mean absorption depth. Jahoda and
McCammon [2] show that for k <1 (in our counter x
was less than 0.13 for all energies considered), the
probability f(n, N,) that exactly n electrons reach the
avalanche region from a cloud of N, electrons produced
by an individual X-ray absorbed in the counter can be
approximated by

: n <7D
o) =x(1- ) & (®)
Combining this result with the initial secondary electron
distribution Q’(i) gives the probability Q(i) that ex-
actly i electrons reach the avalanche region. Using the
above expression for f(n, Ny), Q(i) is given by
i—1 (x—1)
. ’ys ,y. m 1

0=~ ¥ (e x(1-2)" )

m=0 !

, i\ 1
+,,Z>,-(Q (n)x(l n) n)' (9)
The terms in this equation are the probability of pro-
ducing exactly i electrons minus the probability of
losing one or more electrons given an initial production
of i electrons plus the probability of initially producing
more than / initial electrons and losing all but i of
them. While the individual corrections are small for
argon, the cumulative effect on the shape of the distri-
bution is large (see fig. 4).

The distribution Q(i) for any E, can be determined
from egs. (4)—(9), given values for W, ', D/w, A, and
the appropriate AE,. The output pulse height distribu-
tion can then be determined by convolving Q(i) with
the avalanche distribution function, as shown in egs. (2)
and (3). This last step requires values for u and 4.

5.3. Determining the parameters

The model requires values for the parameters W,
AE,, f’, D/w, A, p and h. The value for W is
constant and need not be precisely known. Its effect on
the predicted mean pulse height enters only as p/W
while its effects on the width of the secondary electron
distribution scale very nearly as f'/W. For most gas
mixtures W is between 25 and 33 eV, and simply
assuming a value of 29 eV will be accurate enough. (W
can be as low as 15 eV in Penning mixtures, and more
care must be taken in such cases.) The fit values for u
and f’ will compensate for inaccuracies in W.

The mean absorption depth A is easily calculated
from the gas composition and atomic absorption cross
sections as given, for example, in ref. {19]. The parame-
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ters D/w, p, and & are independent of E, so a single
value needs to be determined for each by fitting to
calibration lines. The energy offsets AE, are constant
between atomic absorption edges but have distinct val-
ues on either side of each absorption edge. Therefore, if
there are n absorption edges in the photon energy range
of interest, n+ 1 values of AE, must be determined.
The effective Fano factor f° may be treated as a
constant over the entire energy range of interest in
conventional counters. In counters with reduced or no
avalanche broadening, f’ should be approximated as a
linear function of photon energy, with discontinuities in
both slope and intercept at absorption edges as dis-
cussed in section 5.1.

It is necessary to determine the energy offsets in eq.
(4) separately in each interval between atomic absorp-
tion edges of the counter gas. Therefore, at least one
calibration line is required in each interval. Each
calibration line should be well above the next lower
absorption edge, and thus out of the small region just
above an absorption edge where eq. (4) is a poor
approximation to the mean number of secondary elec-
trons. One additional calibration line is necessary to
determine the apparent gas gain. This can be either a
line at high enough energy that E > AE, (though care
must be taken that gain saturation is not a problem) or
a second line in one of the energy intervals between
adjacent absorption edges. In the latter case the second
line should be separated in energy from the first by as
much as practical. This set of calibration lines will also
suffice to determine f’, D/w, and h for conventional
proportional counters. For counters with reduced or no
avalanche effects a second line is needed in each inter-
val between absorption edges in order to approximate
the effective Fano factor as a function of energy.

It is impractical to try to determine all of the param-
eters simultaneously as several are strongly coupled.
The predicted mean pulse height is a strong function of
both the offset AE, and the mean gas gain p. The
width of the pulse height distribution is a function of
both the Polya parameter 4 and the effective Fano
factor f”. In this section we describe an iterative method
for determining the parameters one at a time. At each
step the data from a calibration line are fit using the
algorithm of section 5.2, allowing only a subset of the
parameters to vary. Our general approach is to first
determine the apparent gas gain, followed by those
parameters which affect the shape of the distribution,
and finally the offsets A E,. This is only one example of
a workable procedure and other approaches could be
used as appropriate to the precision of the available
calibration spectra and the required accuracy of the
model.

To determine the apparent gas gain g from a single
high energy line, the response function (section 5.2) can
be fit with the gas gain p and the avalanche width

parameter & as free parameters. Values for A E, (which
is < E ) and D/w are fixed at zero. The average
energy required per secondary electron W and the effec-
tive Fano factor f’ are also fixed (29 eV and 0.2 are
reasonable estimates if no data are available).

Once the gas gain has been estimated, a better esti-
mate of & may be obtained in some cases by fitting a
lower energy calibration line which still has a relatively
large mean absorption depth and consequently is little
affected by diffusion. The response function is fit with
AE, and h as free parameters, p fixed at the value
determined above, W and f’ fixed at the same values
used above, and D/w set equal to zero. The calibration
line with the smallest mean absorption depth can now
be used to fit the ratio D/w. The response function is
fit with D/w and AE,  as free parameters, and values
for h, p, W, and f’ as used or determined above. The
resulting best fit value of D/w may be used to rede-
termine 4 at an energy where diffusion losses are less
important. If the calibration data have good statistical
precision, a set of fits with f” fixed at different values
may be performed; the series which converges to the
smallest x? provides the best estimate of f”.

If the calibration data are not of sufficient quality to
determine both # and f’, the effective Fano factor may
be fixed and the best fit value of 4 will compensate for
errors in the total width of the detector response intro-
duced by inaccurate f’ values. This is not an exact
correction as f’ and A produce different skewness and
higher moments in the predicted pulse height distribu-
tion. For the data in fig. 6, however, the quality of the
fits is not strongly affected if f’ is fixed at values
+20% of its nominal value. (The x? increases by about
5 for two free parameters and 120 degrees of freedom
while best fit values for & vary from 1.1 to 1.9.) A value
of 0.20 for the effective Fano factor is probably accu-
rate to +20% for most non-Penning gas mixtures, al-
though it can be as small as 0.05 for Penning mixtures
[16]. With good calibration data f’ can be determined
empirically.

The process may be iterated until stable values of
D/w, h, and f’ are found. Because diffusion affects
primarily the shape of the low pulse height tail, the
value of D/w is relatively independent of h and f’.
However, it can have a large effect on AE, for lines
with very small absorption depths. The initial estimate
of the gain can be checked by repeating the fits which
determined p, but with D/w, kA, and f’ fixed at the
best fit values. The entire procedure can be iterated as
often as necessary, although stable values of D/w, h,
and f’ are usually determined in one or two iterations.
With the resulting f’, D/w, h, and p, one last fit to
each calibration line is required to establish the final
values of the offsets AE,.

Columns 4 and 5 of table 1 give the x? values for
two applications of this procedure to our synchrotron
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source data. In both cases we determined all parameters
except gain from the pulse height spectra of 177 and
277 eV photons. We took values for the gas gain from
the detailed fits in order that the difference in x? values
between the detailed models and the semiempirical ap-
proximation would reflect only differences in the shape
of the predicted response. (With more usual laboratory
facilities, we could have used the easily-produced boron,
carbon, and aluminum K fluorescent lines at 183, 277,
and 1490 eV to determine all parameters including
gain.) For both sets we took W =28.5 eV. Column 4
represents fits where f’ and h were both adjusted to
give the best fit (the final values were f’=0.175 and
h = 1.40), while column 5 gives the results when f’ was
fixed at 0.20 (the best fit for # was 1.44). The x2 values
obtained from the semiempirical predictions are a sig-
nificant improvement over the Poisson and Prescott
fitting functions and the number of free parameters
required is reduced.
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