
JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 8 15 APRIL 2003
Microcalorimeter and bolometer model
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The standard nonequilibrium theory of noise in ideal bolometers and microcalorimeters fails to
predict the performance of real devices due to additional effects that become important at low
temperature. In this paper we extend the theory to include the most important of these effects and
find that the performance of microcalorimeters operating at 60 mK can be quantitatively predicted.
We give a simple method for doing the necessary calculations, borrowing the block diagram
formalism from electronic control theory. ©2003 American Institute of Physics.
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I. INTRODUCTION

A complete nonequilibrium theory for the noise
simple bolometers with ideal resistive thermometers w
given by Mather in 1982~Ref. 1! and extended to microcalo
rimeter performance two years later.2 Here we use the term
bolometer and calorimeter in the conventional sense, res
tively indicating power detectors and integrating energy
tectors.

This theory shows that the performance of these dev
improves dramatically as the operating temperature is
duced. However, at temperatures below;200 mK, it be-
comes increasingly difficult to construct a bolometer that
haves according to the ideal assumptions. The resistanc
the thermometer becomes dependent on readout power
temperature and equilibration times between different p
of the detector become significant. Thermodynamic fluct
tions between internal parts are then an additional no
source. The physical description for most of these effect
straightforward, but combining all of them into a detect
model can be algebraically daunting.

Theoretical models that describe complex thermal arc
tectures are necessary to understand the behavior of rea
vices, and some groups have already extended the ‘‘id
model developed by Mather in 1982 to include some n
ideal effects in order to explain their experimental results.3–6

We developed a general bolometer and microcalorim
model using the block diagram formalism of control theo
The formalism helps with the mechanics of the proble
while keeping the physical model reasonably transparen7–9

In the model we have included the thermal decoupling
tween the electron system and the phonon system in the
mometer, the so-calledhot-electronmodel, the thermal de
coupling between the absorber and the thermometer,
nonohmic behaviors of the thermometer in addition to

a!Current address: Department of Physics, University of Miami, P.O. B
248046, Coral Gables, FL 33124. FAX:~305! 284-4222. Electronic mail:
galeazzi@physics.miami.edu
4850021-8979/2003/93(8)/4856/14/$20.00
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hot-electron effect. The hot-electron model assumes that
resistance of the thermometer depends on the temperatu
the electrons, and there is a thermal resistance between
electrons and the crystal lattice through which the bias po
must flow, increasing the temperature of the electrons ab
the temperature of the lattice and, therefore, changing
thermometer resistance. This effect is well known in met
at low temperatures and has recently been studied in s
conductors in the variable-range hopping regime.10–12 The
noise analysis incorporates terms for thermometer John
and 1/f noise, amplifier noise, load resistor Johnson noi
and thermodynamic fluctuations between the electron
phonon systems in the thermometer as well as between
absorber, the thermometer, and the heat sink. In the m
we also included the effect of thermometer nonohmic beh
ior, i.e., dependence of the thermometer resistance on
bias signal. This effect is particularly important when tran
tion edge sensors~TES’s! are used13 and makes the mode
valuable for predicting the performance of this type
detector.

II. THE IDEAL MODEL

To help the reader understand the algebra of our mo
we decided to start our analysis with an overview of the id
model that has been previously developed. Despite their
ferent applications, bolometers and microcalorimeters
very similar detectors and the theory of their operation
largely the same. The considerations of this paper apply
both kinds of detectors unless otherwise specified and
will use the generic term ‘‘detectors’’ to refer to both.

Typically a bolometer or a microcalorimeter is compos
of three parts: an absorber that converts the incident powe
energy into a temperature variation, a sensor that reads
the temperature variation, and a thermal link between
detector and a heat sink. The sensor is typically a resi
whose resistance strongly depends on the temperature ar
the working point. An ideal detector can be represented b
discrete absorber of heat capacityC in contact with the heat

x
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sink through a thermal conductivityG ~see Fig. 1! and a
thermometer always at the temperature of the absorber.
thermometer sensitivity is specified by

a[
T

R

dR

dT
, ~1!

whereT is the detector temperature andR is the sensor re-
sistance. The thermal conductivityG is defined as

G[
dP

dT
, ~2!

whereP is the power dissipated into the detector. The co
ductivity G can generally be expressed as a power law of
detector temperatureT, i.e., G5G0Tb. Notice that numeri-
cally G0 is equal to the thermal conductivity at 1 K, bu
dimensionallyG0 is a thermal conductivity divided by a tem
perature to theb.

In equilibrium, with no other input power than the Jou
power P used to read out the thermometer resistance,
equilibrium temperature of the detectorT is determined by
integrating Eq.~2! between the heat sink temperatureTS and
the detector temperature:

E
TS

T

G~T8!dT85P~T!. ~3!

Assuming the power law expression forG introduced
before and integrating it becomes

~Tb112TS
b11!5

b11

G0
P~T!. ~4!

It is important to remember, when calculating the equil
rium temperature, that the powerP depends on the value o
the sensor resistance and, as a consequence, it depends
temperatureT, as explicitly indicated in Eq.~4!. To calculate
the equilibrium temperature it is therefore necessary to so
the system of equations represented by Eq.~4!, the P vs R
curve and theR vs T curve. In general, the system must
solved numerically.

Of interest from the point of view of the detector oper
tion is how the temperature riseDT above the equilibrium
temperature depends on an external incident powerW. The
power input to the detector (W1P) is partly stored into the
heat capacity of the detector and partly flows to the heat s
through the thermal conductivity. The equation that de
mines the generic temperatureTD of the detector is therefore

FIG. 1. Thermal sketch of a bolometer or microcalorimeter.
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dTD

dt
1E

TS

TD
G~T8!dT85W1P~TD!, ~5!

where we explicitly indicated that the bias power can be
function of the temperatureTD and where the quantitiesTD ,
W, and P can be a function of timet. We can express the
generic detector temperatureTD as a function of the equilib-
rium temperatureT defined in Eq.~4! asTD5T1DT. Equa-
tion ~5! then becomes

C
d~T1DT!

dt
1E

TS

T

G~T8!dT81E
T

T1DT

G~T8!dT8

5W1P~T1DT!. ~6!

If we stay in the so-calledsmall-signal limit—i.e., we as-
sume thatDT is small compared toT—we can expand the
second integral to lowest order inDT/T, obtaining

C
d~T1DT!

dt
1E

TS

T

G~T8!dT81G~T!DT

5W1P~T!1DP, ~7!

with DP5P(T1DT)2P(T). Subtracting Eq.~3! from Eq.
~7! and considering that the equilibrium temperatureT does
not change with time, we obtain

C
d~DT!

dt
1GDT5W1DP, ~8!

where for simplicity we expressedG[G(T).
In general, the bias power will change with temperatu

since R changes, and its expression depends on the
source impedance. A typical bias circuit is illustrated in F
2 whereR is the thermometer resistance andRL is a load
resistor. The most commonly used bias conditions are n
current bias (RL@R) and near voltage bias (RL!R). More
complex bias circuits are also used and can always be re
sented by the circuit of Fig. 2 using Thevenin equivalen
theorems. Differentiating the expression for the Joule pow
P5I 2R5V2/R and using the bias circuit of Fig. 2 we obta

DP52
P

T

R2RL

RL1R
aDT. ~9!

This term is generally referred to as theelectrothermal
feedbackterm and it often plays an important role in th

FIG. 2. Typical detector readout circuit.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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response of a detector. For simplicity in the small-signal a
lytical calculations, we write the electrothermal feedba
term as

DP52GETFDT, ~10!

where

GETF[
P

T

R2RL

RL1R
a, ~11!

so that Eq.~8! becomes

C
d~DT!

dt
1~G1GETF!DT5W ~12!

or, introducing an equivalent thermal conductivityGe f f5G
1GETF ~which we refer to aseffective thermal conductivity!,

C
d~DT!

dt
1Ge f fDT5W. ~13!

The easiest way to solve this differential equation is
ing Fourier transforms. The procedure is to use Fourier tra
forms to convert the terms of Eq.~13! to the frequency do-
main, solve the equation in the frequency domain wher
becomes a linear equation, and then Fourier invert transf
the result to the time domain. The advantage of solving
~13! in the frequency domain comes from the fact that
expressiondDT(t)/dt in the frequency domain become
j vDT(v), where we used the engineering notationj
5A21. Equation ~13! in the frequency domain the
becomes

j vCDT~v!1Ge f fDT~v!5W~v!, ~14!

whose solution is

DT~v!5
1

Ge f f

1

11 j vte f f
W~v!, ~15!

with te f f5C/Ge f f .
The detector system behaves as a low-pass system,

time constantte f f . For negative electrothermal feedba
GETF must be positive and the detector time constant
shortened. For positive feedbackGETF is negative and the
detector time constant is lengthened and, in the case
uGETFu bigger thanG, the detector becomes unstable. T
sign of GETF depends on the sign ofa and on the bias
condition used~i.e., the ratioR/RL). In the small-signal~lin-
ear! limit considered here and in absence of amplifier noi
the signal has no effect on the detector performance. H
ever, positive feedback reduces the effect of amplifier no
while negative feedback helps linearize the large-signal g
and improves microcalorimeter resolution for large signals
high count rate. Since it can usually be arranged that am
fier noise is negligible, these practical considerations n
mally favor negative feedback. Current bias (R,RL) for de-
tectors with negativea and voltage bias (R.RL) for
detectors with positivea are then used.

In operating a detector, what is really detected is
directly the temperature variationDT, but the resistance
variationDR, which is read out either as a voltage or curre
variation, that is
Downloaded 25 Oct 2005 to 128.104.1.219. Redistribution subject to AIP
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DV5V
a

T

RL

RL1R
DT, ~16!

DI 52I
a

T

R

RL1R
DT. ~17!

We can generically indicate the output signal asX and the
relation between the output and the temperature as

DX

X
5aAtr

DT

T
, ~18!

whereAtr is a dimensionless parameter that quantifies h
much the output signal is sensitive to resistance changes
that we call the transducer sensitivity. NumericallyAtr is
defined as

Atr[
R

X

dX

dR
. ~19!

Notice that the expression ofAtr can be easily derived from
Eqs. ~18! and ~16! or ~17! for voltage and current readou
and is always smaller or equal to unity for passive bias
cuit (RL.0).

The response of a detector is usually quantified by
responsivity S(v), defined as

S~v!5
DX~v!

W~v!
; ~20!

that is, the responsivity characterizes the response of the
tector, DX, to an input powerW. In the ideal model just
described we can combine Eqs.~15! and ~18! to obtain

DX~v!5
1

Ge f f

1

11 j vte f f

XaAtr

T
W~v!, ~21!

and the responsivity is then equal to

S~v!5
1

Ge f f

1

11 j vte f f

XaAtr

T
. ~22!

A detector at the working point is also often described
the complex dynamic impedanceZ(v)5dV(v)/dI(v). The
dynamic impedanceZ(v) differs from the detector resis
tanceR5V/I due to effect of the electrothermal feedbac
When the current changes, the power dissipated into the
tector changes too; therefore, the temperature and the d
tor resistance change. It is often useful to express the de
tor performance and characteristics in terms of the dyna
impedance since it can be easily measured experimenta

The calculation of the analytical expression of the d
namic impedance is simple. Differentiating Ohm’s law,V
5IR, we obtain

dV5I dR1R dI. ~23!

Using Eq.~8! in the frequency domain withW50 and the
definition of the thermometer sensitivitya in Eq. ~1!, we
obtain:

dR5
R

T
adT5

Ra

GT

1

11 j vt
dP, ~24!
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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with t5C/G. This t is called the ‘‘intrinsic’’ or ‘‘thermal’’
time constant of the detector.

Differentiating the expression of the Joule power dissipa
into the thermometerP5VI, we obtain

dP5V dI1I dV, ~25!

which, combined with Eqs.~23! and ~24!, gives

dV5R dI1I
Ra

GT

1

11 jvt
~ I dV1V dI!. ~26!

Notice that in Eqs.~23!–~26! most of the terms are functio
of the frequencyv. Solving Eq.~26! we obtain

Z~v!5
dV~v!

dI~v!
5R

11
Pa

GT
1 j vt

12
Pa

GT
1 jvt

5Z0

11 jvt
Z01R

2Z0

11 jvt
Z01R

2R

,

~27!

where we used the expression

Z05Z~v50!5R

11
Pa

GT

12
Pa

GT

. ~28!

Notice that whenv→`, Z→R.
The dynamic impedanceZ(v)5dV/dI is easily mea-

sured experimentally. It can be determined most readily
adding a small ac signal to the bias voltage and measu
the transfer functionof the detectorTF(v). This is the ratio
of amplitudes and relative phase between changes in the
tector voltage and changes in the bias voltage as a func
of frequency. Most spectrum analyzers have the capabilit
measuring the complex ratio between two signals as a fu
tion of frequency and can do this simultaneously over
frequency range of interest using a band-limited white no
source. Signal averaging allows very precise measureme
be made while remaining in the small-signal limit. The d
namic impedance is easily derived from the transfer funct
using the value of the load resistance and making approp
corrections for stray electrical capacitance or inductance
the circuit. For example, in the bias circuit of Fig. 2, witho
stray capacitance, the impedance is equal toZ(v)
5RLTF(v)/@12TF(v)#.

It is then possible to determine values for many of t
important parameters of the detector by fitting the real a
imaginary parts of the transfer function by adjusting the th
mal and electrical parameters in the expressions given in
paper. This is very valuable for diagnosing performan
problems or improving the design of detectors. Note t
when the thermometer temperature coefficienta is positive,

FIG. 3. Block diagram representation of a system with transfer func
H(v).
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the impedance can become infinite. It is then more con
nient to work with the inverse quantity 1/Z(v)5dI/dV.

In the case of a detector whose signal is read out a
voltage change, where the responsivityS is defined as
S(v)5dV(v)/dW(v), we can also write

S~v!5
1

2I

~Z0 /R!21

~Z0 /RL!11

1

11 j vte f f
. ~29!

At this point we want to introduce a useful technique f
analyzing the response of a bolometer or a microcalorime
block diagram algebra. This technique is generally used
electrical engineering to analyze feedback systems and
very useful when extending the theory of bolometers a
microcalorimeters to more complicated realistic system
The algebra of block diagrams and the language of con
theory have been successfully used before in the analys
microcalorimeters and bolometer.7–9 The basic idea is that a
system with transfer function in the frequency domain eq
to H(v) is represented by the diagram of Fig. 3. If an inp
In~v! is applied to the system, the output is Out(v)
5H(v) In(v). Complicated systems can always be reduc
to the system of Fig. 3 using the block diagram algeb
Figure 4 shows some of the common operations that will
used in this paper. The procedure to solve the response
system using the block diagram algebra is then the follo
ing:

~i! Write the differential equations that define the syste
response.

~ii ! Convert the equations to the frequency domain a
for each equation define the individual system response
the input to that system.

~iii ! Lay out the block diagram that describes all t
equations together.

~iv! Use the block diagram algebra to reduce the blo
diagram to the form of Fig. 3 that represents the syst
response in the frequency domain.

This representation is particularly useful to deal w
feedback systems, i.e., systems where the output is comb
to the input through a transfer functionG(v) as in Fig. 5. In

n

FIG. 4. Some general operations with the block diagram algebra.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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this case, whenever an external input In~v! is applied to the
system the output is

Out~v!5
H~v!

11H~v!G~v!
In~v!5Hc- l~v!In~v!, ~30!

whereHc- l(v) is called theclosed-loop transfer function.
Going back to the theory of bolometers and microca

rimeters, we can write Eq.~12! as

C
d~DT!

dt
1G DT5W2GETF DT, ~31!

which, in the frequency domain, becomes

j vC DT1G DT5W2GETF DT. ~32!

We now want to generate the block diagram describing
equation. The left part represents the response of the sy
that we are analyzing~the outputDT as a function of an
input power!, while the right part represents the input to th
system. The fact that the input depends on the outputDT is
a consequence of feedback. The left part of the equa
represents a low pass system with transfer function

H~v!5
1

G

1

11 jvt
, ~33!

The input consists of an external inputW minus the output
itself modified by the transfer functionGETF . This is a typi-
cal feedback system represented by the block diagram of
6, where we also included the conversion ofDT to DX. If
we now solve the block diagram using the block diagr
algebra and Eq.~30!, we obtain

DX~v!5
1

G1GETF

1

11 j v
C

G1GETF

XaAtr

T
W~v!

5
1

Ge f f

1

11 j vte f f

XaAtr

T
W~v!, ~34!

which is the same expression of Eq.~21!.

III. HOT-ELECTRON MODEL

A first-order correction to the standard theory of bolo
eters and microcalorimeters is the introduction of thehot-
electron model.The model assumes that the thermal coupl
between electrons and lattice in the sensor at low temp

FIG. 5. Block diagram representation of a feedback system.

FIG. 6. Block diagram representation of a detector.
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ture is weaker than the coupling between electrons, so
the electric power applied to the electrons rises them t
higher temperature than the lattice. This behavior is a kno
property of metals and has recently been quantified in do
silicon,12 so that it affects both TES’s and semiconduc
sensors. The detector can therefore be described as
posed of two different systems—the electron system and
phonon or lattice system—and the two are thermally c
nected by a thermal conductivityGe- l . We assume for mod-
els derived in this paper that the detector resistance resp
to the temperature of its electron system and that the J
power of the bias is dissipated there. For economy of pres
tation, the models derived here assume the input power
ters through the absorber phonon system, which is then t
mally connected to the thermometer lattice and further to
heat sink through the thermal conductivityG ~see Fig. 7!.
There are important classes of detectors where signal po
is absorbed directly in the electron system of the thermo
eter or absorber, and the primary thermal path to the h
sink could be from the absorber lattice or either electr
system. In the general case, these all result in different t
mal circuits, and the block diagrams must be modified
cordingly. In the approximation of this section, the phon
system includes both the absorber and the phonons in
thermometer~we will discuss later the case of a decoupl
absorber!.

In equilibrium with no external power, the electron sy
tem is at a higher temperature than the phonon system is
the Joule power flows from the electron system to the p
non system and from there to the heat sink. The equilibri
temperature of the two systems without any signal pow
applied can be calculated in a way similar to that used for
simple model described in the previous paragraph. As
ported in the literature, the thermal conductivity betwe
electrons and phonons can be described as a power la
the electron temperatureTe ~Refs. 10 and 11!:

Ge- l5G0eTe
be . ~35!

From the definition of thermal conductivity, we als
have

FIG. 7. Thermal sketch of a bolometer or microcalorimeter in the h
electron model.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Ge- l5
dP

dTe
, ~36!

and if we combine the two and integrate from the latt
temperatureTl to the equilibrium electron temperatureTe ,
we obtain

Te
be11

5
be11

G0e
P~Te!1Tl

be11, ~37!

where we explicitly indicated the dependence of the poweP
on the electron temperatureTe . The equilibrium temperature
of the lattice system is still determined by Eq.~4! which, in
this case, can be written as

~Tl
b112TS

b11!5
b11

G0
P~Te!. ~38!

Equations~37! and ~38! represent a system with two var
ablesTe andTl that can be solved numerically.

Here we are considering detectors where the exte
power is absorbed in the phonon system, and the sensit
of the detector can be strongly affected by the reduced
sitivity of Te to changes inTl introduced by the equilibrium
difference of these temperatures and nonlinear nature
Ge- l . We consider these effects in two steps. A first appro
mation is to assume that the heat capacity of the elec
system is negligible. This case can be solved easily, and
sufficient in many cases. We will then derive the gene
result forCeÞ0.

A. Hot-electron model with CeÄ0

If the electron system heat capacityCe can be neglected
the dependence of the electron temperature on the la
temperature is simply determined by Eq.~37!. When the
temperature of the lattice system changes byDTl the tem-
perature of the electron system will instantly change byDTe

and Eq.~37! becomes

~Te1DTe!
be115

be11

G0e
P~Te1DTe!1~Tl1DTl !

be11.

~39!

If we subtract Eq.~37! from Eq. ~39! we obtain

~Te1DTe!
be112Te

be11
5

be11

G0e
@P~Te1DTe!2P~Te!#

1~Tl1DTl !
be112Tl

be11 . ~40!

Assuming thatDTe!Te andDTl!Tl we can expand Eq
~40! to lowest order inDTe /Te andDTl /Tl , obtaining

S 11~be11!
DTe

Te
DTe

be11
2Te

be11

5
be11

G0e
DP1S 11~be11!

DTl

Tl
DTl

be11
2Tl

be11, ~41!

which reduces to

Te
be DTe5

DP

G0e
1Tl

be DTl . ~42!
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We already calculated the change in Joule powerDP in
Eqs.~9! and~10!, which in the hot-electron case depends
the change in electron temperatureDTe :

DP52GETFDTe , ~43!

and therefore

DTe5
Tl

be

Te
be1

GETF

G0e

DTl

5
Ge- l~Tl !

Ge- l~Te!1GETF
DTl

5
Ge- l~Tl !

Ge- l~Te!

1

11
GETF

Ge- l~Te!

DTl5Ae- lDTl , ~44!

where Ge- l(Te) is the electron-lattice thermal conductivit
calculated at the electron temperature,Ge- l(Tl) is the
electron-lattice thermal conductivity calculated at the latt
temperature, and

Ae- l5
DTe

DTl
5

Ge- l~Tl !

Ge- l~Te!

1

11
GETF

Ge- l~Te!

. ~45!

The quantityAe- l is adimensional and represents the te
perature sensitivity of the thermometer. WhenAe- l51, the
thermometer is completely sensitive to temperature chan
in the lattice system, whenAe- l50, the thermometer is com
pletely insensitive to temperature changes in the lattice.

We now want to represent the detector using the blo
diagram algebra. The detector behavior is described by E
~18!, ~31!, and ~44!, which in the frequency domain can b
written as

j vCDTl1GDTl5W2GETFDTe , ~46!

DTe5Ae- lDTl , ~47!

and

DX5
XaAtr

Te
DTe . ~48!

Converting these three equations in block diagram alge
and connecting the blocks of the algebra together we ob
the representation of Fig. 8~a!. With some simple algebra, th
diagram is equivalent to that of Fig. 8~b!, and considering
that GETF}a, the hot-electron model with negligible hea
capacity of the electron system is then equivalent to the s
dard model with the substitutions

a→ae f f5Ae- la, ~49!

T→Te, ~50!

and therefore the responsivity of the detector becomes

S~v!5
1

~G1Ae- lGETF!

1

~11 j vte f f!

Ae- laXAtr

Te
~51!

with te f f5Cl /(G1Ae- lGETF), whereCl is the lattice heat
capacity.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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B. Hot-electron model with C eÅ0

If the heat capacity of the electron system is not ne
gible, the electron temperature is defined@in analogy to Eq.
~5!# by

Ce

dTe

dt
1E

Tl

Te
Ge- l~T8!dT85P~Te!, ~52!

with Ge- l defined by Eq.~35!. What we are interested in i
the rise of the electron temperatureDTe above equilibrium
when the lattice temperature rises byDTl . Equation ~52!
then becomes

Ce

d~Te1DTe!

dt
1E

Tl1DTl

Te1DTe
Ge- l~T8!dT85P~Te1DTe!.

~53!

Subtracting Eq.~52! from Eq. ~53! we obtain

Ce

d~DTe!

dt
1E

Te

Te1DTe
Ge- l~T8!dT8

2E
Tl

Tl1DTl
Ge- l~T8!dT85DP, ~54!

which, using Eq.~35! and expanding the result to lowe
order inDTe /Te andDTl /Tl , becomes

Ce

d~DTe!

dt
1Ge- l~Te!DTe5Ge- l~Tl !DTl2GETFDTe ,

~55!

with GETF defined by Eq.~43!. The system of Eq.~55! is
represented by the block diagram of Fig. 9 withte- l

5Ce/Ge-l(Te), which has the solution

DTe~v!5Ae- l

1

11 j vte
DTl , ~56!

with te5Ce /@Ge- l(Te)1GETF# and Ae- l defined by Eq.
~45!. Notice that Eq.~56! reduces to Eq.~44! if Ce50.

FIG. 8. Block diagram representation of a detector using the hot-elec
model with Ce50. ~a! Block diagram as derived from the equations th
describe the detector. Notice that the representation of the ETF as actin
the lattice system of the sensor is due to the fact that we are assuming
Ce50. In general, ifCeÞ0, the ETF is an electric effect and acts on t
electron system.~b! Equivalent representation to highlight the effect of t
term Ae- l .
Downloaded 25 Oct 2005 to 128.104.1.219. Redistribution subject to AIP
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The behavior of the lattice system is still regulated
Eqs.~5!, ~7!, and~8!, with the substitutions ofCl for C and
of Tl for T, i.e.,

Cl

d~DTl !

dt
1G DTl5W1DPl . ~57!

The powerPl is the power flowing from the electron syste
to the lattice system through the thermal conductivityGe- l :

Pl5E
Tl

Te
Ge- l~T8!dT8. ~58!

Therefore,

DPl5E
Te

Te1DTe
Ge- l~T8!dT82E

Tl

Tl1DTl
Ge- l~T8!dT8,

~59!

which, considering the expression of Eq.~35! for the thermal
conductivity and expanding the result to lowest order
DTe /Te andDTl /Tl , becomes

DPl5Ge- l~Te!DTe2Ge- l~Tl !DTl . ~60!

Equation~57! then becomes

Cl

d~DTl !

dt
1G DTl5W1Ge- l~Te!DTe2Ge- l~Tl !DTl .

~61!

Equations~55! and ~61! can be written in the frequency do
main as

j vCeDTe1Ge- l~Te!DTe5Ge- l~Tl !DTl2GETFDTe
~62!

and

j vClDTl1G DTl5W1Ge- l~Te!DTe2Ge- l~Tl !DTl ,
~63!

and are represented by the block diagram of Fig. 10~a!. The
diagram can be solved to obtain an analytical expression
the detector responsivity. In Figs. 10~b! and 10~c! we show
two intermediate steps in the solution of the block diagr
algebra. The detector responsivity is then equal to

S~v!5
1

GETFAe- l S 11 j v
Ce

GETF
D1G~11 j vt l !~11 j vte!

3
Ae- lXaAtr

Te
. ~64!

with t l5Cl /G. Notice that in the case ofCe50 this expres-
sion reduces to Eq.~51!, i.e., the hot-electron model with
negligible electron heat capacity, as expected.

n

on
hat

FIG. 9. Representation of the electron system in the hot-electron model
CeÞ0.
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FIG. 10. Block diagram representatio
of a detector using the hot electro
model withCeÞ0. ~a! Block diagram
as derived from the equations describ
ing the system.~b!,~c! Intermediate
steps for the solution of the block dia
gram representation.
te

o

e
Moreover, in the case ofG0e→`, i.e., where electrons
and phonons can be thermally considered as a single sys
the responsivity becomes

S~v!5
1

~G1GETF!

1

S 11 j v
Cl1Ce

G1GETF
D

XAtra

Te
. ~65!

This is just the ideal responsivity of a bolometer or micr
calorimeter with thermal conductivityG, temperatureTe ,
and heat capacityC5Cl1Ce .
rfo
ic
2

rm
th

th

o
w
b

tp
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In analogy to Eqs.~23!–~27!, we can also calculate th
dynamic impedance of the detector. We can write Eqs.~62!
and ~63! without external powerW and explicitly using the
symbolDP for the change in Joule power.

j vCeDTe1Ge- l~Te!DTe5Ge- l~Tl !DTl1DP ~66!

and

j vClDTl1GDTl5Ge- l~Te!DTe2Ge- l~Tl !DTl . ~67!

Combining Eqs.~1!, ~23!, ~25!, ~66!, and ~67!, we then
obtain
Z~v!5R

@G1Ge- l~Tl !1 j vCl #S Ge- l~Te!1 j vCe1
Pa

Te
D2Ge- l~Te! Ge- l~Tl !

@G1Ge- l~Tl !1 j vCl #S Ge- l~Te!1 j vCe2
Pa

Te
D2Ge- l~Te! Ge- l~Tl !

. ~68!
EP

the
e-
e-
alo-

the
on
wo
d it
IV. NOISE SOURCES

There are several noise sources that affect the pe
mance of bolometers and microcalorimeters, most of wh
have already been taken into account by Mather in 1981

These include the Johnson noise of the sensor, the the
noise due to the thermal link between the detector and
heat sink~also referred to as phonon noise!, the Johnson
noise of the load resistor used in the bias circuit, and
noise of the readout electronics~amplifier noise!. In his paper
Mather also mentions a 1/f noise contribution that seems t
be more related to the sensor characteristics. This noise
studied and quantified for silicon-implanted thermistors
Han et al. in 1998.14

The effect of the noise on the detector performance
generally quantified by thenoise equivalent power~NEP!.
The NEP corresponds to the powerW(v) that would be
necessary as input of the detector to generate an ou
r-
h
.
al
e

e

as
y

is

ut

DX(v) equal to the output generated by the noise. The N
is calculated as the ratio between the outputDX(v) gener-
ated by the noise and the responsivity of the detectorS(v).
In the case of bolometers, the NEP directly quantifies
limit of the bolometer in detecting a power signal at fr
quencyv. In the case of microcalorimeters the NEP is r
lated to the best possible energy resolution of the microc
rimeter by the expression2

DErms5
1

AE
0

` 2dv

pNEP2~v!

. ~69!

Here we want to analyze the effect of the noise on
detector performance in the picture of the hot-electr
model. The introduction of the hot-electron model has t
main effects: it changes the NEP of the noise sources an
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 11. Block diagram representation of the noise in a detector using the hot-electron model~a! and equivalent representation for the ideal model~b!. Notice
that if the outputX is a current, the load resistor noise that adds to the output is represented byi RL

.
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introduces a new noise term, which is the thermal noise
to the thermal fluctuations between the lattice and elec
systems.

A. Effect of the hot-electron model on the noise

The different noise contributions affect the detector
different ways. In particular, the thermal noise correspond
a power noise on the lattice system. The Johnson nois
calculated as a voltage fluctuation but can be introduce
the model as an electron temperature noise term. Thef
noise is calculated as a fluctuation in the value of the re
tance but can be described as electron temperature noise
as well. The load resistor noise can be described as a n
that adds to the output signal and also generates a J
power noise on the electron system. The amplifier noise a
directly to the output signal. In Fig. 11~a! the contributions of
the different noise terms in the microcalorimeter are sho
The same noise sources in the ideal model scenario
shown in Fig. 11~b!.9 Dimensionally, the thermal noisePth is
a power spectral density~in units of W/AHz), the Johnson
noiseeJ and the load resistor noiseeRL

are voltage spectra

densities (V/AHz), the 1/f noise (DR/R)1/f has dimensions
Hz21/2, and the amplifier noiseeamp has the dimension o
the transducer outputX divided by square root of frequenc
(V/AHz or A/AHz). The thermal noise was calculated qua
titatively by Mather in 1982~assuming diffusive therma
conductivity! and is equal to

Pth5A4kbGTl
2S ETS

Tl ~T8k~T8!!2

~Tlk~Tl !!2
dT8

E
TS

Tl k~T8!

k~Tl !
dT8

D 1/2

, ~70!
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wherekb is the Boltzmann constant andk(T8) is the function
describing the temperature dependence of the thermal
ductivity of the heat link material.

The Johnson noise of the sensor resistance is simply
scribed by

eJ5A4kbTeR. ~71!

The load resistor noise can be represented by a vol
noise across the detector, equal to

eRL
5A4kbTSRL

R

RL1R
, ~72!

where we assumed that the electrical circuit is heat sun
the temperatureTS . This noise adds directly to the outpu
signal as a voltageeRL

or as a currenti RL
5eRL

/R, and gen-
erates Joule power noise in the electron systemPRL

52IeRL

~see Fig. 11!.
The 1/f noise is, by definition, frequency dependent, a

it is usually described as a fluctuation in the value of t
resistance:

S DR

R D
1/f

}
1

Av
. ~73!

Solving the block diagram of Fig. 11 independently f
each noise contribution and using the expression ofS(v) of
Eq. ~64! we obtain
 license or copyright, see http://jap.aip.org/jap/copyright.jsp



d
le

om
t
t

ec

l

is
t

em
th
e
u-

lin

th
er

t i
ck

bo-
the
e-

ities
uc-
are
the
eat
the

tem

the
om-
ttice
wer
and

an-

le
er-
r is

the

e of

4865J. Appl. Phys., Vol. 93, No. 8, 15 April 2003 M. Galeazzi and D. McCammon
NEPth5Pth , ~74!

NEPJ5A4kbTe

Pa2

Te
be11

Tl
be S G~11 j vt l !~11 j vte- l !

1 j vCe

Tl
be

Te
beD , ~75!

NEPRL
5

eRL

S~v!
1

2IeRL

Ge- l~Tl !
@G1Ge- l~Tl !1 j vCl #, ~76!

NEP1/f5S DR

R D
1/f

Te

a

Te
be

Tl
be S G~11 j vt l !~11 j vte- l !

1 j vCe

Tl
be

Te
beD , ~77!

NEPamp5
eamp

S~v!
. ~78!

Notice that the NEP due to the readout electronics an
the load resistor are the only terms that depend on the e
trothermal feedback. Therefore, if these terms are small c
pared to the other contributions, as is usually the case,
electro-thermal feedback changes the time constant of
detector, but does not affect NEP~v!.

The expression of the NEP in the case of negligible el
tron heat capacity is easily derived usingCe50. Notice that
in the limit of G0e→`, Eqs.~74! and~75! reduce to the idea
expressions calculated by Mather:1

NEPth5Pth , ~79!

NEPJ5
A4kbTe

APa
TeGS 11 j v

Cl1Ce

G D . ~80!

B. Thermal noise due to hot-electron decoupling

The hot-electron model also introduces an extra no
term in addition to those just considered. This is due
power fluctuations between the lattice and electron syst
The magnitude of these fluctuations depends in part on
physics of the electron-phonon decoupling. A simple expr
sion appropriate for ‘‘radiative’’ energy transfer was calc
lated by Boyle and Rodger in 1959~Ref. 15!:

Phe5A2kbGe- l~Te!
Te

51Tl
5

Te
3

. ~81!

A more rigorous expression for electron-phonon decoup
was also calculated by Golwalaet al. in 1997 ~Ref. 16!.

Notice that these fluctuations transport power from
lattice system to the electron system and vice versa; th
fore, if a powerPhe adds to the electron system, the sam
powerPhe is subtracted from the lattice system. The effec
shown in the block diagram of Fig. 11. Solving the blo
diagram for the hot electron noise we obtain
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NEPhe5Phe

G

Ge- l~Tl !
~11 j vt l !, ~82!

wheret l has been previously defined ast l5Cl /G. This ex-
pression does not depend onCe and therefore is valid also
for the caseCe50. Moreover, ifG0e→`, this term is zero,
as expected.

V. ABSORBER DECOUPLING

Another aspect that may affect the performance of
lometers and microcalorimeters that we want to study is
effect of the absorber thermal conductivity. Most of the d
tectors are built with absorber and sensor as different ent
connected by epoxy or other material with a thermal cond
tivity Ga . Depending on the experimental setup, there
different configurations that must be used to describe
thermal system. For example, the thermal link to the h
sink can be through the absorber or the thermometer and
absorber can be in thermal connection with the lattice sys
~when an electrical insulating material is used! or the elec-
tron system~when a conducting material is used!.

What we want to analyze here is the case in which
detector is connected to the heat sink through the therm
eter lattice system and the absorber is connected to the la
system of the thermometer. In this case, the external po
hits the absorber and is released to the lattice system
then detected in the electron system~see Fig. 12!. We assume
that the absorber has a heat capacityCa . Notice that the
analytical tools that we give here can be easily used to qu
tify the behavior of any other configuration.

A. Responsivity and dynamic impedance

In equilibrium, with no other power input than the Jou
power in the sensor, there is no power flow through the th
mal link Ga and therefore the temperature of the absorbe
equal to the lattice temperatureTa5Tl . If an external power
W is applied to the absorber, the detector is described in
frequency domain by the set of equations

FIG. 12. Thermal sketch of a bolometer or microcalorimeter in the cas
absorber decoupling and hot-electron model.
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FIG. 13. Block diagram representation of a detector with a finite thermal conductivity between absorber and lattice system. We have used the nGl

5G1Ga1Ge- l(Tl). Notice that this implicitly integrates the heat relief for the lattice system provided by the electron and absorber decoupling into th
response function. This is different from what was done before in Fig. 10, where the heat relief was explicitly reported in the block diagram as ack
effect. The two descriptions are equivalent. We used the implicit description here to compact the block diagram algebra.
se
ions

m.
of

ctor
j vCaDTa1GaDTa5W1GaDTl , ~83!

j vClDTl1@G1Ga1Ge- l~Tl !#DTl

5GaDTa1Ge- l~Te!DTe , ~84!

j vCeDTe1Ge- l~Te!DTe5Ge- l~Tl !DTl2GETFDTe . ~85!
r
th
r

du
-
tro
on
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If we want to build the block diagram associated with the
three equations, we can consider the left side of the equat
as the response function of the three systems~absorber, lat-
tice, electrons! and the right side as the input to each syste
Connecting the three systems gives the block diagram
Fig. 13. The diagram can be solved to obtain the dete
responsivity
r with
S~v!5
1

j vCa~11 j vte!1~11 j vte!~11 j vta!@G1Ge- l~Tl !1 j vCl #2Ge- l~Te!Ae- l~11 j vta!

Ae- lXaAtr

Te
, ~86!

with ta5Ca /Ga . Notice that ifGa→`, this expression reduces to the one without absorber decoupling for a detecto
lattice heat capacityCl5Cl1Ca .

Using Eqs.~1!, ~23!, ~25!, and~83!–~85!, we can also calculate the detector dynamic impedance

Z~v!5R

$@G1Ge- l~Tl !1 j vCl #~11 j vta!1 j vCa%S Ge- l~Te!1 j vCe1
Pa

Te
D2Ge- l~Te!Ge- l~Tl !~11 j vta!

$@G1Ge- l~Tl !1 j vCl #~11 j vta!1 j vCa%S Ge- l~Te!1 j vCe2
Pa

Te
D2Ge- l~Te!Ge- l~Tl !~11 j vta!

. ~87!
ith
the
be

the

ra-
e of
B. Noise contribution

As in the hot-electron model of the thermometer, the
are two effects introduced by the thermal link between
absorber and lattice system. The first effect is that the
sponse of the detector is different; therefore, the NEP’s
to thermal, Johnson, 1/f , load resistor, amplifier, and hot
electron noise are different. The second effect is the in
duction of an extra noise term due to the power fluctuati
between absorber and lattice.
e
e
e-
e

-
s

Figure 14 shows the block diagram of the detector w
the noise sources evident. As in the hot electron model,
noise due to the link between absorber and lattice can
described as a power flow out of the absorber and into
lattice or vice versa. This power has same valuePa , but
opposite sign at the two ends of the link. Since the tempe
ture of absorber and lattice systems are equal, the valu
Pa is simply
FIG. 14. Block diagram representation of noise in a detector with a finite thermal conductivity between absorber and lattice system.
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Pa5A4kbGaTl
2. ~88!

Solving the block diagram of Fig. 14 independently f
each noise source we obtain

NEPth5Pth~11 j vta!, ~89!

NEPJ5A4kbTe

Pa2

Te
be11

Tl
be F ~11 j vte- l !@ j vCa1G~1

1 j vta!~11 j vt l !#1~11 j vta!
Tl

be

Te
be

j vCeG ,

~90!

NEP1/f5S DR

R D
1/f

Te

a

Te
be

Tl
beF ~11 j vte- l !@ j vCa1G~1

1 j vta!~11 j vt l !#1~11 j vta!
Tl

be

Te
be

j vCeG ,

~91!

NEPRL
5

eRL

S~v!
1

2IeRL

Ge- l~Tl !
@ j vCa1~11 j vta!~G

1Ge- l~Tl !1 j vCl !#, ~92!

NEPamp5eamp/S~v!, ~93!

NEPhe5
Phe

Ge- l~Tl !
@ j vCa1G~11 j vta!~11 j vt l !#,

~94!

NEPa5Paj vta . ~95!

Notice again that ifGa→`, these expressions are equal
the hot-electron expressions for a detector with lattice h
capacityCl1Ca and the absorber NEP is equal to zero.

VI. NONOHMIC BEHAVIOR OF THE THERMOMETER

Another effect that may change the performance o
detector is the nonohmic behavior of the thermometer;
the thermometer resistance may not depend only on the
mometer electron temperature, but also on the current~or
voltage! that is used to readout the temperature changeR
5R(Te ,I ).17 This effect is particularly strong when TE
thermometers are used.13 The responsivity of a detector wit
nonohmic thermometer has already been calculated
Mather in 1984~Ref. 17! and its effect on TES microcalo
rimeters was studied in detail by Lindeman in 2000~Ref.
13!. A nonohmic thermometer can also be easily included
our model. If the resistance of the thermometer depends
the readout signal, we can write

dR5
R

Te
a IdTe1

R

I
b IdI ~96!

or, equivalently,

dR5
R

Te
aVdTe1

R

V
bVdV, ~97!
Downloaded 25 Oct 2005 to 128.104.1.219. Redistribution subject to AIP
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where

a I5
Te

R

]R

]Te
U

I

, b I5
I

R

]R

]I U
Te

, aV5
Te

R

]R

]Te
U

V

,

bV5
V

R

]R

]VU
Te

. ~98!

Using Eq.~96! or ~97! is equivalent, and it is always possib
to go from one notation to the other using Ohm’s laws:

bV5
b I

11b I
, aV5

a I

11b I
. ~99!

The only terms in our model that are affected by t
nonohmic behavior are the electrothermal feedback te
GETF and the transducer responsivityAtr . We can calculate
them assuming the bias circuit of Fig. 2:

P5I 2R⇒DP52IR DI 1I 2 DR, ~100!

I 5
Vbias

RL1R
⇒DI 52

I

RL1R
DR, ~101!

and

V5Vbias2IRL⇒DV52RL DI . ~102!

Using Eq.~96! we obtain

DP52
P

Te

R2RL

RL1R~11b I !
a I DTe , ~103!

DV

V
5a I

RL

RL1R~11b I !

DTe

Te
, ~104!

and

DI

I
52a I

R

RL1R~11b I !

DTe

Te
. ~105!

The model describing a nonohmic thermometer is the
fore identical to that describing a linear one, with th
substitution

a→a I , ~106!

GETF5
P

Te

R2RL

RL1R~11b I !
a I , ~107!

and

Atr5
RL

RL1R~11b I !
, ~108!

for voltage readout, or

Atr52
R

RL1R~11b I !
, ~109!

for current readout. With this substitution in the equatio
that we derived previously in the paper, it is possible to p
dict both responsivity and noise in the detector.

We can also use Eq.~96! to calculate the dynamic im
pedance of the detector. In the case of absorber and
electron decoupling we obtain
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Z~v!5R~b I11!

3

$@G1Ge- l~Tl !1 j vCl #~11 j vta!1 j vCa%S Ge- l~Te!1 j vCe1
Pa I

Te~b I11! D2Ge- l~Te!Ge- l~Tl !~11 j vta!

$@G1Ge- l~Tl !1 j vCl #~11 j vta!1 j vCa%S Ge- l~Te!1 j vCe2
Pa I

Te
D2Ge- l~Te!Ge- l~Tl !~11 j vta!

.

~110!

This reduces to

Z~v!5R~b I11!

@G1Ge- l~Tl !1 j vCl #S Ge- l~Te!1 j vCe1
Pa I

Te~b I11! D2Ge- l~Te!Ge- l~Tl !

@G1Ge- l~Tl !1 j vCl #S Ge- l~Te!1 j vCe2
Pa I

Te
D2Ge- l~Te!Ge- l~Tl !

, ~111!
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ut

f the

of
d be-
hnson
heat
the

hnson
for hot-electron decoupling only, and to

Z~v!5R~b I11!

11
Pa I

GT~b I11!
1 j vt

12
Pa I

GT
1 j vt

, ~112!

for the ideal model.
We do not know of a rigorous general method for der

ing the Johnson noise in a nonohmic resistor. Nor does th
seem to be a single definite scheme for determining the
response of the detector to this fundamental thermal no
since it is an internal noise generated in the nonohmic re
tor, and it is not clear how it should itself affect the nono
micity of the resistor. We are investigating this further, b
for the present have assumed that the Johnson noise ca
represented as a random voltage source with power spe
density 4kbTeR in series with the nonohmic resistance a
that the Johnson fluctuations in the source cause the r
tance to fluctuate due to the current dependence of the r
tor. This results in the same suppression of the Johnson n
due to the current dependence of the resistance as occu
external signals and noise if the nonohmic resistance is
pressed asR(Te ,I ). This uncertainty~or dependence on th
details of the physics! applies only to the Johnson noise
the sensor. Small-signal responsivities to all external sou
of signal and noise are unambiguous, so it is only the de
tor Johnson noise contribution to the NEP that is uncerta

VII. RESULTS

To verify our results we simulated the performance of
existing microcalorimeter and compared the results with d
from the detector. We considered a microcalorimeter use
the development phase of the X-Ray Spectrometer~XRS! for
the Astro-E satellite.18 The detector that we used for the com
parison was part of a 636 test array of microcalorimeter
with silicon-implanted thermistors and HgTe absorbers.
chose this detector because the array has been studie
great detail and the characteristics of the pixels are w
known.

We first used Eqs.~37! and~38! to calculate the expecte
equilibrium temperature of the detector. We then used E
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~89!–~95! to calculated the expected noise spectra. The s
of these can be compared with the measured noise spect
as shown in Fig. 15. In the model all the input parameters
fixed to the values measured experimentally. The only va
that was not available and that has been adjusted during
calculation of the theoretical noise is the stray capacita
between gate and source of the field effect transistor~FET!
electronics. The value of 5 pF obtained for the stray capa
tance is in good agreement with typical values for the F
amplifiers used in the measurement. The agreement betw
the model and the measurement is very good.

The data set has been acquired at a heat sink temper
of 65 mK. The model predicts an equilibrium temperature
77 mK and, through Eq.~69!, an energy resolution of 8.4 eV
to be compared with the measured values of 78 mK and 8
eV. The agreement is well within the accuracy of the inp
parameters in the model and demonstrates the power o
model in predicting detector performance.

FIG. 15. Comparison between the noise from a 636 XRS array pixel~cour-
tesy of Caroline K. Stahle! and our model. The model includes the effect
the decoupling between hot electrons and phonons in the sensor an
tween absorber and sensor. The noise sources that are included are Jo
noise of the sensor, thermal noise due to the link between detector and
sink, thermal noise due to the link between phonons and electrons in
sensor, thermal noise due to the link between absorber and sensor, Jo
noise of the load resistor, 1/f noise, and noise of the readout electronics.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Our analytical model has also been compared with
model that uses matrix notation to numerically solve the
earized differential equations of the microcalorimeter.19 The
numerical model was developed independently at the NA
Goddard Space Flight Center to predict the performance
more complex detectors.19 Using the same parameter value
the agreement between the two is within the numerical e
in the implementation of the models.20

VIII. CONCLUSIONS

We have developed an analytical model that predicts
behavior of microcalorimeters and bolometers. The mo
includes the effect of hot electrons in the detector senso
thermal decoupling between absorber and sensor, and
effect of a nonohmic thermometer. The model analytica
predicts the detector responsivity and expected noise u
these conditions. The noise sources that are included in
model are the Johnson noise of the sensor, the thermal n
due to the link between detector and heat sink, the ther
noise due to the link between phonons and electrons in
sensor, the thermal noise due to the link between abso
and sensor, the Johnson noise of the load resistor, thef
noise as thermal noise, and the noise of the readout elec
ics. A comparison between the predictions of our model a
data from a detector developed for the XRS instrum
shows good agreement.

We also described a different way to analyze the per
mance of bolometers and microcalorimeters, using block
gram algebra. The formalism that we introduced can be
plied to the description of different detector configuration
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